--- library_name: peft license: other base_model: sethuiyer/Medichat-Llama3-8B tags: - axolotl - generated_from_trainer model-index: - name: feddaca4-cb5c-4f8e-8b46-288b425ee1c3 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: sethuiyer/Medichat-Llama3-8B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4d445458bcc291df_train_data.json ds_type: json format: custom path: /workspace/input_data/4d445458bcc291df_train_data.json type: field_input: counter_statement field_instruction: question field_output: counter_longer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: dsakerkwq/feddaca4-cb5c-4f8e-8b46-288b425ee1c3 learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/4d445458bcc291df_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true s2_attention: false sample_packing: false saves_per_epoch: 4 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: feddaca4-cb5c-4f8e-8b46-288b425ee1c3 wandb_project: Gradients-On-Demand wandb_runid: feddaca4-cb5c-4f8e-8b46-288b425ee1c3 warmup_steps: 100 weight_decay: 0.01 xformers_attention: false ```

# feddaca4-cb5c-4f8e-8b46-288b425ee1c3 This model is a fine-tuned version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9424 | 0.0015 | 1 | 1.2899 | | 1.0601 | 0.0046 | 3 | 1.2885 | | 1.1404 | 0.0092 | 6 | 1.2818 | | 1.0557 | 0.0138 | 9 | 1.2536 | | 1.1208 | 0.0184 | 12 | 1.1905 | | 0.986 | 0.0231 | 15 | 1.0825 | | 0.8857 | 0.0277 | 18 | 0.9516 | | 0.8378 | 0.0323 | 21 | 0.8335 | | 0.7278 | 0.0369 | 24 | 0.7376 | | 0.7035 | 0.0415 | 27 | 0.7180 | | 0.6894 | 0.0461 | 30 | 0.6842 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1