1shoomun commited on
Commit
7957364
·
verified ·
1 Parent(s): e7f75f8

Updated Weights

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:2620
8
+ - loss:MultipleNegativesRankingLoss
9
+ - loss:CosineSimilarityLoss
10
+ base_model: jinaai/jina-embedding-b-en-v1
11
+ widget:
12
+ - source_sentence: What sector am I most heavily invested in?
13
+ sentences:
14
+ - 'Show me how to switch my stock portfolio to mutual funds
15
+
16
+ '
17
+ - What percentage of my portfolio is in X
18
+ - Which sector do I invest most in?
19
+ - source_sentence: Can you tell me how my portfolio ranks among others?
20
+ sentences:
21
+ - What is my AMC wise split ?
22
+ - In which funds am I paying highest fees
23
+ - Compare my portfolio with others?
24
+ - source_sentence: Which of my funds has the highest risk level?
25
+ sentences:
26
+ - Give me python code to find best funds in my portfolio
27
+ - Show my stocks ranked by performance
28
+ - Show my riskiest mutual funds
29
+ - source_sentence: What's going right with my portfolio?
30
+ sentences:
31
+ - Is my portfolio linked?
32
+ - My portfolio returns over all the years
33
+ - What's going well in my portfolio
34
+ - source_sentence: I'd like to know the percentage of large cap in my investments.
35
+ sentences:
36
+ - Show my riskiest holdings
37
+ - Can you show what percentage of my portfolio consists of large cap
38
+ - What is the expected return of my portfolio?
39
+ pipeline_tag: sentence-similarity
40
+ library_name: sentence-transformers
41
+ metrics:
42
+ - cosine_accuracy@1
43
+ - cosine_accuracy@3
44
+ - cosine_accuracy@5
45
+ - cosine_accuracy@10
46
+ - cosine_precision@1
47
+ - cosine_precision@3
48
+ - cosine_precision@5
49
+ - cosine_precision@10
50
+ - cosine_recall@1
51
+ - cosine_recall@3
52
+ - cosine_recall@5
53
+ - cosine_recall@10
54
+ - cosine_ndcg@10
55
+ - cosine_mrr@10
56
+ - cosine_map@100
57
+ model-index:
58
+ - name: SentenceTransformer based on jinaai/jina-embedding-b-en-v1
59
+ results:
60
+ - task:
61
+ type: information-retrieval
62
+ name: Information Retrieval
63
+ dataset:
64
+ name: test eval
65
+ type: test-eval
66
+ metrics:
67
+ - type: cosine_accuracy@1
68
+ value: 0.8625954198473282
69
+ name: Cosine Accuracy@1
70
+ - type: cosine_accuracy@3
71
+ value: 0.9961832061068703
72
+ name: Cosine Accuracy@3
73
+ - type: cosine_accuracy@5
74
+ value: 1.0
75
+ name: Cosine Accuracy@5
76
+ - type: cosine_accuracy@10
77
+ value: 1.0
78
+ name: Cosine Accuracy@10
79
+ - type: cosine_precision@1
80
+ value: 0.8625954198473282
81
+ name: Cosine Precision@1
82
+ - type: cosine_precision@3
83
+ value: 0.33206106870229
84
+ name: Cosine Precision@3
85
+ - type: cosine_precision@5
86
+ value: 0.19999999999999998
87
+ name: Cosine Precision@5
88
+ - type: cosine_precision@10
89
+ value: 0.09999999999999999
90
+ name: Cosine Precision@10
91
+ - type: cosine_recall@1
92
+ value: 0.8625954198473282
93
+ name: Cosine Recall@1
94
+ - type: cosine_recall@3
95
+ value: 0.9961832061068703
96
+ name: Cosine Recall@3
97
+ - type: cosine_recall@5
98
+ value: 1.0
99
+ name: Cosine Recall@5
100
+ - type: cosine_recall@10
101
+ value: 1.0
102
+ name: Cosine Recall@10
103
+ - type: cosine_ndcg@10
104
+ value: 0.9460250731496836
105
+ name: Cosine Ndcg@10
106
+ - type: cosine_mrr@10
107
+ value: 0.9271628498727736
108
+ name: Cosine Mrr@10
109
+ - type: cosine_map@100
110
+ value: 0.9271628498727736
111
+ name: Cosine Map@100
112
+ ---
113
+
114
+ # SentenceTransformer based on jinaai/jina-embedding-b-en-v1
115
+
116
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embedding-b-en-v1](https://huggingface.co/jinaai/jina-embedding-b-en-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
117
+
118
+ ## Model Details
119
+
120
+ ### Model Description
121
+ - **Model Type:** Sentence Transformer
122
+ - **Base model:** [jinaai/jina-embedding-b-en-v1](https://huggingface.co/jinaai/jina-embedding-b-en-v1) <!-- at revision 32aa658e5ceb90793454d22a57d8e3a14e699516 -->
123
+ - **Maximum Sequence Length:** 512 tokens
124
+ - **Output Dimensionality:** 768 dimensions
125
+ - **Similarity Function:** Cosine Similarity
126
+ <!-- - **Training Dataset:** Unknown -->
127
+ <!-- - **Language:** Unknown -->
128
+ <!-- - **License:** Unknown -->
129
+
130
+ ### Model Sources
131
+
132
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
133
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
134
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
135
+
136
+ ### Full Model Architecture
137
+
138
+ ```
139
+ SentenceTransformer(
140
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: T5EncoderModel
141
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
142
+ )
143
+ ```
144
+
145
+ ## Usage
146
+
147
+ ### Direct Usage (Sentence Transformers)
148
+
149
+ First install the Sentence Transformers library:
150
+
151
+ ```bash
152
+ pip install -U sentence-transformers
153
+ ```
154
+
155
+ Then you can load this model and run inference.
156
+ ```python
157
+ from sentence_transformers import SentenceTransformer
158
+
159
+ # Download from the 🤗 Hub
160
+ model = SentenceTransformer("sentence_transformers_model_id")
161
+ # Run inference
162
+ sentences = [
163
+ "I'd like to know the percentage of large cap in my investments.",
164
+ 'Can you show what percentage of my portfolio consists of large cap',
165
+ 'Show my riskiest holdings',
166
+ ]
167
+ embeddings = model.encode(sentences)
168
+ print(embeddings.shape)
169
+ # [3, 768]
170
+
171
+ # Get the similarity scores for the embeddings
172
+ similarities = model.similarity(embeddings, embeddings)
173
+ print(similarities.shape)
174
+ # [3, 3]
175
+ ```
176
+
177
+ <!--
178
+ ### Direct Usage (Transformers)
179
+
180
+ <details><summary>Click to see the direct usage in Transformers</summary>
181
+
182
+ </details>
183
+ -->
184
+
185
+ <!--
186
+ ### Downstream Usage (Sentence Transformers)
187
+
188
+ You can finetune this model on your own dataset.
189
+
190
+ <details><summary>Click to expand</summary>
191
+
192
+ </details>
193
+ -->
194
+
195
+ <!--
196
+ ### Out-of-Scope Use
197
+
198
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
199
+ -->
200
+
201
+ ## Evaluation
202
+
203
+ ### Metrics
204
+
205
+ #### Information Retrieval
206
+
207
+ * Dataset: `test-eval`
208
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
209
+
210
+ | Metric | Value |
211
+ |:--------------------|:----------|
212
+ | cosine_accuracy@1 | 0.8626 |
213
+ | cosine_accuracy@3 | 0.9962 |
214
+ | cosine_accuracy@5 | 1.0 |
215
+ | cosine_accuracy@10 | 1.0 |
216
+ | cosine_precision@1 | 0.8626 |
217
+ | cosine_precision@3 | 0.3321 |
218
+ | cosine_precision@5 | 0.2 |
219
+ | cosine_precision@10 | 0.1 |
220
+ | cosine_recall@1 | 0.8626 |
221
+ | cosine_recall@3 | 0.9962 |
222
+ | cosine_recall@5 | 1.0 |
223
+ | cosine_recall@10 | 1.0 |
224
+ | **cosine_ndcg@10** | **0.946** |
225
+ | cosine_mrr@10 | 0.9272 |
226
+ | cosine_map@100 | 0.9272 |
227
+
228
+ <!--
229
+ ## Bias, Risks and Limitations
230
+
231
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
232
+ -->
233
+
234
+ <!--
235
+ ### Recommendations
236
+
237
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
238
+ -->
239
+
240
+ ## Training Details
241
+
242
+ ### Training Datasets
243
+
244
+ #### Unnamed Dataset
245
+
246
+ * Size: 1,310 training samples
247
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
248
+ * Approximate statistics based on the first 1000 samples:
249
+ | | sentence_0 | sentence_1 | label |
250
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------|
251
+ | type | string | string | float |
252
+ | details | <ul><li>min: 4 tokens</li><li>mean: 10.62 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.06 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
253
+ * Samples:
254
+ | sentence_0 | sentence_1 | label |
255
+ |:--------------------------------------------------------------------|:-------------------------------------------------------------------|:-----------------|
256
+ | <code>are there any of my funds that are lagging behind</code> | <code>do I hold any funds that haven't been performing well</code> | <code>1.0</code> |
257
+ | <code>Which sectors are performing the best in my portfolio?</code> | <code>What are my best performing sectors?</code> | <code>1.0</code> |
258
+ | <code>List some of my top holdings</code> | <code>Show some of my best performing holdings</code> | <code>1.0</code> |
259
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
260
+ ```json
261
+ {
262
+ "scale": 20.0,
263
+ "similarity_fct": "cos_sim"
264
+ }
265
+ ```
266
+
267
+ #### Unnamed Dataset
268
+
269
+ * Size: 1,310 training samples
270
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
271
+ * Approximate statistics based on the first 1000 samples:
272
+ | | sentence_0 | sentence_1 | label |
273
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------|
274
+ | type | string | string | float |
275
+ | details | <ul><li>min: 4 tokens</li><li>mean: 10.68 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.13 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
276
+ * Samples:
277
+ | sentence_0 | sentence_1 | label |
278
+ |:--------------------------------------------------------------------|:----------------------------------------------------------|:-----------------|
279
+ | <code>I need my portfolio to hit 1000% returns by next month</code> | <code>make my portfolio return 1000% by next month</code> | <code>1.0</code> |
280
+ | <code>What are my stocks?</code> | <code>Show my stocks</code> | <code>1.0</code> |
281
+ | <code>I'd like to know my sector distribution.</code> | <code>What is my sector allocation?</code> | <code>1.0</code> |
282
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
283
+ ```json
284
+ {
285
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
286
+ }
287
+ ```
288
+
289
+ ### Training Hyperparameters
290
+ #### Non-Default Hyperparameters
291
+
292
+ - `eval_strategy`: steps
293
+ - `per_device_train_batch_size`: 32
294
+ - `per_device_eval_batch_size`: 32
295
+ - `num_train_epochs`: 15
296
+ - `multi_dataset_batch_sampler`: round_robin
297
+
298
+ #### All Hyperparameters
299
+ <details><summary>Click to expand</summary>
300
+
301
+ - `overwrite_output_dir`: False
302
+ - `do_predict`: False
303
+ - `eval_strategy`: steps
304
+ - `prediction_loss_only`: True
305
+ - `per_device_train_batch_size`: 32
306
+ - `per_device_eval_batch_size`: 32
307
+ - `per_gpu_train_batch_size`: None
308
+ - `per_gpu_eval_batch_size`: None
309
+ - `gradient_accumulation_steps`: 1
310
+ - `eval_accumulation_steps`: None
311
+ - `torch_empty_cache_steps`: None
312
+ - `learning_rate`: 5e-05
313
+ - `weight_decay`: 0.0
314
+ - `adam_beta1`: 0.9
315
+ - `adam_beta2`: 0.999
316
+ - `adam_epsilon`: 1e-08
317
+ - `max_grad_norm`: 1
318
+ - `num_train_epochs`: 15
319
+ - `max_steps`: -1
320
+ - `lr_scheduler_type`: linear
321
+ - `lr_scheduler_kwargs`: {}
322
+ - `warmup_ratio`: 0.0
323
+ - `warmup_steps`: 0
324
+ - `log_level`: passive
325
+ - `log_level_replica`: warning
326
+ - `log_on_each_node`: True
327
+ - `logging_nan_inf_filter`: True
328
+ - `save_safetensors`: True
329
+ - `save_on_each_node`: False
330
+ - `save_only_model`: False
331
+ - `restore_callback_states_from_checkpoint`: False
332
+ - `no_cuda`: False
333
+ - `use_cpu`: False
334
+ - `use_mps_device`: False
335
+ - `seed`: 42
336
+ - `data_seed`: None
337
+ - `jit_mode_eval`: False
338
+ - `use_ipex`: False
339
+ - `bf16`: False
340
+ - `fp16`: False
341
+ - `fp16_opt_level`: O1
342
+ - `half_precision_backend`: auto
343
+ - `bf16_full_eval`: False
344
+ - `fp16_full_eval`: False
345
+ - `tf32`: None
346
+ - `local_rank`: 0
347
+ - `ddp_backend`: None
348
+ - `tpu_num_cores`: None
349
+ - `tpu_metrics_debug`: False
350
+ - `debug`: []
351
+ - `dataloader_drop_last`: False
352
+ - `dataloader_num_workers`: 0
353
+ - `dataloader_prefetch_factor`: None
354
+ - `past_index`: -1
355
+ - `disable_tqdm`: False
356
+ - `remove_unused_columns`: True
357
+ - `label_names`: None
358
+ - `load_best_model_at_end`: False
359
+ - `ignore_data_skip`: False
360
+ - `fsdp`: []
361
+ - `fsdp_min_num_params`: 0
362
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
363
+ - `tp_size`: 0
364
+ - `fsdp_transformer_layer_cls_to_wrap`: None
365
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
366
+ - `deepspeed`: None
367
+ - `label_smoothing_factor`: 0.0
368
+ - `optim`: adamw_torch
369
+ - `optim_args`: None
370
+ - `adafactor`: False
371
+ - `group_by_length`: False
372
+ - `length_column_name`: length
373
+ - `ddp_find_unused_parameters`: None
374
+ - `ddp_bucket_cap_mb`: None
375
+ - `ddp_broadcast_buffers`: False
376
+ - `dataloader_pin_memory`: True
377
+ - `dataloader_persistent_workers`: False
378
+ - `skip_memory_metrics`: True
379
+ - `use_legacy_prediction_loop`: False
380
+ - `push_to_hub`: False
381
+ - `resume_from_checkpoint`: None
382
+ - `hub_model_id`: None
383
+ - `hub_strategy`: every_save
384
+ - `hub_private_repo`: None
385
+ - `hub_always_push`: False
386
+ - `gradient_checkpointing`: False
387
+ - `gradient_checkpointing_kwargs`: None
388
+ - `include_inputs_for_metrics`: False
389
+ - `include_for_metrics`: []
390
+ - `eval_do_concat_batches`: True
391
+ - `fp16_backend`: auto
392
+ - `push_to_hub_model_id`: None
393
+ - `push_to_hub_organization`: None
394
+ - `mp_parameters`:
395
+ - `auto_find_batch_size`: False
396
+ - `full_determinism`: False
397
+ - `torchdynamo`: None
398
+ - `ray_scope`: last
399
+ - `ddp_timeout`: 1800
400
+ - `torch_compile`: False
401
+ - `torch_compile_backend`: None
402
+ - `torch_compile_mode`: None
403
+ - `include_tokens_per_second`: False
404
+ - `include_num_input_tokens_seen`: False
405
+ - `neftune_noise_alpha`: None
406
+ - `optim_target_modules`: None
407
+ - `batch_eval_metrics`: False
408
+ - `eval_on_start`: False
409
+ - `use_liger_kernel`: False
410
+ - `eval_use_gather_object`: False
411
+ - `average_tokens_across_devices`: False
412
+ - `prompts`: None
413
+ - `batch_sampler`: batch_sampler
414
+ - `multi_dataset_batch_sampler`: round_robin
415
+
416
+ </details>
417
+
418
+ ### Training Logs
419
+ | Epoch | Step | Training Loss | test-eval_cosine_ndcg@10 |
420
+ |:-------:|:----:|:-------------:|:------------------------:|
421
+ | 1.0 | 82 | - | 0.8929 |
422
+ | 2.0 | 164 | - | 0.9007 |
423
+ | 3.0 | 246 | - | 0.9112 |
424
+ | 4.0 | 328 | - | 0.9188 |
425
+ | 5.0 | 410 | - | 0.9285 |
426
+ | 6.0 | 492 | - | 0.9286 |
427
+ | 6.0976 | 500 | 0.2352 | 0.9291 |
428
+ | 7.0 | 574 | - | 0.9356 |
429
+ | 8.0 | 656 | - | 0.9404 |
430
+ | 9.0 | 738 | - | 0.9406 |
431
+ | 10.0 | 820 | - | 0.9434 |
432
+ | 11.0 | 902 | - | 0.9424 |
433
+ | 12.0 | 984 | - | 0.9455 |
434
+ | 12.1951 | 1000 | 0.164 | 0.9460 |
435
+
436
+
437
+ ### Framework Versions
438
+ - Python: 3.10.16
439
+ - Sentence Transformers: 4.1.0
440
+ - Transformers: 4.51.3
441
+ - PyTorch: 2.7.0
442
+ - Accelerate: 1.6.0
443
+ - Datasets: 3.5.0
444
+ - Tokenizers: 0.21.1
445
+
446
+ ## Citation
447
+
448
+ ### BibTeX
449
+
450
+ #### Sentence Transformers
451
+ ```bibtex
452
+ @inproceedings{reimers-2019-sentence-bert,
453
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
454
+ author = "Reimers, Nils and Gurevych, Iryna",
455
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
456
+ month = "11",
457
+ year = "2019",
458
+ publisher = "Association for Computational Linguistics",
459
+ url = "https://arxiv.org/abs/1908.10084",
460
+ }
461
+ ```
462
+
463
+ #### MultipleNegativesRankingLoss
464
+ ```bibtex
465
+ @misc{henderson2017efficient,
466
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
467
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
468
+ year={2017},
469
+ eprint={1705.00652},
470
+ archivePrefix={arXiv},
471
+ primaryClass={cs.CL}
472
+ }
473
+ ```
474
+
475
+ <!--
476
+ ## Glossary
477
+
478
+ *Clearly define terms in order to be accessible across audiences.*
479
+ -->
480
+
481
+ <!--
482
+ ## Model Card Authors
483
+
484
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
485
+ -->
486
+
487
+ <!--
488
+ ## Model Card Contact
489
+
490
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
491
+ -->
checkpoint-2240/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-2240/README.md ADDED
@@ -0,0 +1,500 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:3570
8
+ - loss:MultipleNegativesRankingLoss
9
+ - loss:CosineSimilarityLoss
10
+ base_model: jinaai/jina-embedding-b-en-v1
11
+ widget:
12
+ - source_sentence: How do I change my stocks to mutual funds?
13
+ sentences:
14
+ - How can I swap my stocks for mutual funds?
15
+ - Show my stocks
16
+ - What are the profits I have gained in my portfolio
17
+ - source_sentence: What percentage of my investments are in large cap?
18
+ sentences:
19
+ - Show some of my best performing holdings
20
+ - Suggest recommendations for me
21
+ - Can you show what percentage of my portfolio consists of large cap
22
+ - source_sentence: How do I change my risk profile?
23
+ sentences:
24
+ - What can I do to bring down the volatility in my portfolio?
25
+ - I want to change my risk profile
26
+ - What is the total value of my portfolio
27
+ - source_sentence: Is now a good time to buy energy stocks considering the war in
28
+ the Middle East and rising fuel prices?
29
+ sentences:
30
+ - Am I investing in the small cap market more?
31
+ - I saw in the news that there is a war going on in the Middle East and fuel will
32
+ be more costly now, should I buy energy sector stocks?
33
+ - Are my ETFs giving better returns compare to my mutual funds?
34
+ - source_sentence: Look for funds that fit my stock holdings
35
+ sentences:
36
+ - Can you tell me if my investments will grow well in the long run?
37
+ - Do I have any stocks in my portfolio?
38
+ - Explore funds that match my stock portfolio
39
+ pipeline_tag: sentence-similarity
40
+ library_name: sentence-transformers
41
+ metrics:
42
+ - cosine_accuracy@1
43
+ - cosine_accuracy@3
44
+ - cosine_accuracy@5
45
+ - cosine_accuracy@10
46
+ - cosine_precision@1
47
+ - cosine_precision@3
48
+ - cosine_precision@5
49
+ - cosine_precision@10
50
+ - cosine_recall@1
51
+ - cosine_recall@3
52
+ - cosine_recall@5
53
+ - cosine_recall@10
54
+ - cosine_ndcg@10
55
+ - cosine_mrr@10
56
+ - cosine_map@100
57
+ model-index:
58
+ - name: SentenceTransformer based on jinaai/jina-embedding-b-en-v1
59
+ results:
60
+ - task:
61
+ type: information-retrieval
62
+ name: Information Retrieval
63
+ dataset:
64
+ name: test eval
65
+ type: test-eval
66
+ metrics:
67
+ - type: cosine_accuracy@1
68
+ value: 0.8659217877094972
69
+ name: Cosine Accuracy@1
70
+ - type: cosine_accuracy@3
71
+ value: 0.9916201117318436
72
+ name: Cosine Accuracy@3
73
+ - type: cosine_accuracy@5
74
+ value: 0.9972067039106145
75
+ name: Cosine Accuracy@5
76
+ - type: cosine_accuracy@10
77
+ value: 1.0
78
+ name: Cosine Accuracy@10
79
+ - type: cosine_precision@1
80
+ value: 0.8659217877094972
81
+ name: Cosine Precision@1
82
+ - type: cosine_precision@3
83
+ value: 0.33054003724394787
84
+ name: Cosine Precision@3
85
+ - type: cosine_precision@5
86
+ value: 0.1994413407821229
87
+ name: Cosine Precision@5
88
+ - type: cosine_precision@10
89
+ value: 0.09999999999999999
90
+ name: Cosine Precision@10
91
+ - type: cosine_recall@1
92
+ value: 0.8659217877094972
93
+ name: Cosine Recall@1
94
+ - type: cosine_recall@3
95
+ value: 0.9916201117318436
96
+ name: Cosine Recall@3
97
+ - type: cosine_recall@5
98
+ value: 0.9972067039106145
99
+ name: Cosine Recall@5
100
+ - type: cosine_recall@10
101
+ value: 1.0
102
+ name: Cosine Recall@10
103
+ - type: cosine_ndcg@10
104
+ value: 0.9460695277624867
105
+ name: Cosine Ndcg@10
106
+ - type: cosine_mrr@10
107
+ value: 0.9273743016759775
108
+ name: Cosine Mrr@10
109
+ - type: cosine_map@100
110
+ value: 0.9273743016759777
111
+ name: Cosine Map@100
112
+ ---
113
+
114
+ # SentenceTransformer based on jinaai/jina-embedding-b-en-v1
115
+
116
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embedding-b-en-v1](https://huggingface.co/jinaai/jina-embedding-b-en-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
117
+
118
+ ## Model Details
119
+
120
+ ### Model Description
121
+ - **Model Type:** Sentence Transformer
122
+ - **Base model:** [jinaai/jina-embedding-b-en-v1](https://huggingface.co/jinaai/jina-embedding-b-en-v1) <!-- at revision 32aa658e5ceb90793454d22a57d8e3a14e699516 -->
123
+ - **Maximum Sequence Length:** 512 tokens
124
+ - **Output Dimensionality:** 768 dimensions
125
+ - **Similarity Function:** Cosine Similarity
126
+ <!-- - **Training Dataset:** Unknown -->
127
+ <!-- - **Language:** Unknown -->
128
+ <!-- - **License:** Unknown -->
129
+
130
+ ### Model Sources
131
+
132
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
133
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
134
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
135
+
136
+ ### Full Model Architecture
137
+
138
+ ```
139
+ SentenceTransformer(
140
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: T5EncoderModel
141
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
142
+ )
143
+ ```
144
+
145
+ ## Usage
146
+
147
+ ### Direct Usage (Sentence Transformers)
148
+
149
+ First install the Sentence Transformers library:
150
+
151
+ ```bash
152
+ pip install -U sentence-transformers
153
+ ```
154
+
155
+ Then you can load this model and run inference.
156
+ ```python
157
+ from sentence_transformers import SentenceTransformer
158
+
159
+ # Download from the 🤗 Hub
160
+ model = SentenceTransformer("sentence_transformers_model_id")
161
+ # Run inference
162
+ sentences = [
163
+ 'Look for funds that fit my stock holdings',
164
+ 'Explore funds that match my stock portfolio',
165
+ 'Can you tell me if my investments will grow well in the long run?',
166
+ ]
167
+ embeddings = model.encode(sentences)
168
+ print(embeddings.shape)
169
+ # [3, 768]
170
+
171
+ # Get the similarity scores for the embeddings
172
+ similarities = model.similarity(embeddings, embeddings)
173
+ print(similarities.shape)
174
+ # [3, 3]
175
+ ```
176
+
177
+ <!--
178
+ ### Direct Usage (Transformers)
179
+
180
+ <details><summary>Click to see the direct usage in Transformers</summary>
181
+
182
+ </details>
183
+ -->
184
+
185
+ <!--
186
+ ### Downstream Usage (Sentence Transformers)
187
+
188
+ You can finetune this model on your own dataset.
189
+
190
+ <details><summary>Click to expand</summary>
191
+
192
+ </details>
193
+ -->
194
+
195
+ <!--
196
+ ### Out-of-Scope Use
197
+
198
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
199
+ -->
200
+
201
+ ## Evaluation
202
+
203
+ ### Metrics
204
+
205
+ #### Information Retrieval
206
+
207
+ * Dataset: `test-eval`
208
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
209
+
210
+ | Metric | Value |
211
+ |:--------------------|:-----------|
212
+ | cosine_accuracy@1 | 0.8659 |
213
+ | cosine_accuracy@3 | 0.9916 |
214
+ | cosine_accuracy@5 | 0.9972 |
215
+ | cosine_accuracy@10 | 1.0 |
216
+ | cosine_precision@1 | 0.8659 |
217
+ | cosine_precision@3 | 0.3305 |
218
+ | cosine_precision@5 | 0.1994 |
219
+ | cosine_precision@10 | 0.1 |
220
+ | cosine_recall@1 | 0.8659 |
221
+ | cosine_recall@3 | 0.9916 |
222
+ | cosine_recall@5 | 0.9972 |
223
+ | cosine_recall@10 | 1.0 |
224
+ | **cosine_ndcg@10** | **0.9461** |
225
+ | cosine_mrr@10 | 0.9274 |
226
+ | cosine_map@100 | 0.9274 |
227
+
228
+ <!--
229
+ ## Bias, Risks and Limitations
230
+
231
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
232
+ -->
233
+
234
+ <!--
235
+ ### Recommendations
236
+
237
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
238
+ -->
239
+
240
+ ## Training Details
241
+
242
+ ### Training Datasets
243
+
244
+ #### Unnamed Dataset
245
+
246
+ * Size: 1,785 training samples
247
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
248
+ * Approximate statistics based on the first 1000 samples:
249
+ | | sentence_0 | sentence_1 | label |
250
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
251
+ | type | string | string | float |
252
+ | details | <ul><li>min: 4 tokens</li><li>mean: 11.4 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.11 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
253
+ * Samples:
254
+ | sentence_0 | sentence_1 | label |
255
+ |:-------------------------------------------------------------------|:---------------------------------------------------------------------------|:-----------------|
256
+ | <code>How can I lower the risk in my investments?</code> | <code>How to reduce my risk </code> | <code>1.0</code> |
257
+ | <code>How is my asset allocation divided?</code> | <code>What is my asset allocation breakdown?</code> | <code>1.0</code> |
258
+ | <code>Any specific swap recommendations for better returns?</code> | <code>What are the specific swap suggestions to improve my returns?</code> | <code>1.0</code> |
259
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
260
+ ```json
261
+ {
262
+ "scale": 20.0,
263
+ "similarity_fct": "cos_sim"
264
+ }
265
+ ```
266
+
267
+ #### Unnamed Dataset
268
+
269
+ * Size: 1,785 training samples
270
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
271
+ * Approximate statistics based on the first 1000 samples:
272
+ | | sentence_0 | sentence_1 | label |
273
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------|
274
+ | type | string | string | float |
275
+ | details | <ul><li>min: 4 tokens</li><li>mean: 11.28 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.98 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
276
+ * Samples:
277
+ | sentence_0 | sentence_1 | label |
278
+ |:----------------------------------------------------------------|:------------------------------------------------------|:-----------------|
279
+ | <code>What should I do to improve my investment returns?</code> | <code>How can I improve my returns?</code> | <code>1.0</code> |
280
+ | <code>Can you give me an overview of my portfolio?</code> | <code>Do you have any insights on my portfolio</code> | <code>1.0</code> |
281
+ | <code>Reveal my stock assets</code> | <code>Show my stocks</code> | <code>1.0</code> |
282
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
283
+ ```json
284
+ {
285
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
286
+ }
287
+ ```
288
+
289
+ ### Training Hyperparameters
290
+ #### Non-Default Hyperparameters
291
+
292
+ - `eval_strategy`: steps
293
+ - `per_device_train_batch_size`: 32
294
+ - `per_device_eval_batch_size`: 32
295
+ - `num_train_epochs`: 20
296
+ - `multi_dataset_batch_sampler`: round_robin
297
+
298
+ #### All Hyperparameters
299
+ <details><summary>Click to expand</summary>
300
+
301
+ - `overwrite_output_dir`: False
302
+ - `do_predict`: False
303
+ - `eval_strategy`: steps
304
+ - `prediction_loss_only`: True
305
+ - `per_device_train_batch_size`: 32
306
+ - `per_device_eval_batch_size`: 32
307
+ - `per_gpu_train_batch_size`: None
308
+ - `per_gpu_eval_batch_size`: None
309
+ - `gradient_accumulation_steps`: 1
310
+ - `eval_accumulation_steps`: None
311
+ - `torch_empty_cache_steps`: None
312
+ - `learning_rate`: 5e-05
313
+ - `weight_decay`: 0.0
314
+ - `adam_beta1`: 0.9
315
+ - `adam_beta2`: 0.999
316
+ - `adam_epsilon`: 1e-08
317
+ - `max_grad_norm`: 1
318
+ - `num_train_epochs`: 20
319
+ - `max_steps`: -1
320
+ - `lr_scheduler_type`: linear
321
+ - `lr_scheduler_kwargs`: {}
322
+ - `warmup_ratio`: 0.0
323
+ - `warmup_steps`: 0
324
+ - `log_level`: passive
325
+ - `log_level_replica`: warning
326
+ - `log_on_each_node`: True
327
+ - `logging_nan_inf_filter`: True
328
+ - `save_safetensors`: True
329
+ - `save_on_each_node`: False
330
+ - `save_only_model`: False
331
+ - `restore_callback_states_from_checkpoint`: False
332
+ - `no_cuda`: False
333
+ - `use_cpu`: False
334
+ - `use_mps_device`: False
335
+ - `seed`: 42
336
+ - `data_seed`: None
337
+ - `jit_mode_eval`: False
338
+ - `use_ipex`: False
339
+ - `bf16`: False
340
+ - `fp16`: False
341
+ - `fp16_opt_level`: O1
342
+ - `half_precision_backend`: auto
343
+ - `bf16_full_eval`: False
344
+ - `fp16_full_eval`: False
345
+ - `tf32`: None
346
+ - `local_rank`: 0
347
+ - `ddp_backend`: None
348
+ - `tpu_num_cores`: None
349
+ - `tpu_metrics_debug`: False
350
+ - `debug`: []
351
+ - `dataloader_drop_last`: False
352
+ - `dataloader_num_workers`: 0
353
+ - `dataloader_prefetch_factor`: None
354
+ - `past_index`: -1
355
+ - `disable_tqdm`: False
356
+ - `remove_unused_columns`: True
357
+ - `label_names`: None
358
+ - `load_best_model_at_end`: False
359
+ - `ignore_data_skip`: False
360
+ - `fsdp`: []
361
+ - `fsdp_min_num_params`: 0
362
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
363
+ - `tp_size`: 0
364
+ - `fsdp_transformer_layer_cls_to_wrap`: None
365
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
366
+ - `deepspeed`: None
367
+ - `label_smoothing_factor`: 0.0
368
+ - `optim`: adamw_torch
369
+ - `optim_args`: None
370
+ - `adafactor`: False
371
+ - `group_by_length`: False
372
+ - `length_column_name`: length
373
+ - `ddp_find_unused_parameters`: None
374
+ - `ddp_bucket_cap_mb`: None
375
+ - `ddp_broadcast_buffers`: False
376
+ - `dataloader_pin_memory`: True
377
+ - `dataloader_persistent_workers`: False
378
+ - `skip_memory_metrics`: True
379
+ - `use_legacy_prediction_loop`: False
380
+ - `push_to_hub`: False
381
+ - `resume_from_checkpoint`: None
382
+ - `hub_model_id`: None
383
+ - `hub_strategy`: every_save
384
+ - `hub_private_repo`: None
385
+ - `hub_always_push`: False
386
+ - `gradient_checkpointing`: False
387
+ - `gradient_checkpointing_kwargs`: None
388
+ - `include_inputs_for_metrics`: False
389
+ - `include_for_metrics`: []
390
+ - `eval_do_concat_batches`: True
391
+ - `fp16_backend`: auto
392
+ - `push_to_hub_model_id`: None
393
+ - `push_to_hub_organization`: None
394
+ - `mp_parameters`:
395
+ - `auto_find_batch_size`: False
396
+ - `full_determinism`: False
397
+ - `torchdynamo`: None
398
+ - `ray_scope`: last
399
+ - `ddp_timeout`: 1800
400
+ - `torch_compile`: False
401
+ - `torch_compile_backend`: None
402
+ - `torch_compile_mode`: None
403
+ - `include_tokens_per_second`: False
404
+ - `include_num_input_tokens_seen`: False
405
+ - `neftune_noise_alpha`: None
406
+ - `optim_target_modules`: None
407
+ - `batch_eval_metrics`: False
408
+ - `eval_on_start`: False
409
+ - `use_liger_kernel`: False
410
+ - `eval_use_gather_object`: False
411
+ - `average_tokens_across_devices`: False
412
+ - `prompts`: None
413
+ - `batch_sampler`: batch_sampler
414
+ - `multi_dataset_batch_sampler`: round_robin
415
+
416
+ </details>
417
+
418
+ ### Training Logs
419
+ | Epoch | Step | Training Loss | test-eval_cosine_ndcg@10 |
420
+ |:-------:|:----:|:-------------:|:------------------------:|
421
+ | 1.0 | 112 | - | 0.9013 |
422
+ | 2.0 | 224 | - | 0.9112 |
423
+ | 3.0 | 336 | - | 0.9250 |
424
+ | 4.0 | 448 | - | 0.9307 |
425
+ | 4.4643 | 500 | 0.1949 | 0.9337 |
426
+ | 5.0 | 560 | - | 0.9342 |
427
+ | 6.0 | 672 | - | 0.9381 |
428
+ | 7.0 | 784 | - | 0.9423 |
429
+ | 8.0 | 896 | - | 0.9426 |
430
+ | 8.9286 | 1000 | 0.1347 | 0.9452 |
431
+ | 9.0 | 1008 | - | 0.9442 |
432
+ | 10.0 | 1120 | - | 0.9461 |
433
+ | 11.0 | 1232 | - | 0.9461 |
434
+ | 12.0 | 1344 | - | 0.9461 |
435
+ | 13.0 | 1456 | - | 0.9461 |
436
+ | 13.3929 | 1500 | 0.1193 | 0.9461 |
437
+ | 14.0 | 1568 | - | 0.9461 |
438
+ | 15.0 | 1680 | - | 0.9461 |
439
+ | 16.0 | 1792 | - | 0.9461 |
440
+ | 17.0 | 1904 | - | 0.9461 |
441
+ | 17.8571 | 2000 | 0.117 | 0.9461 |
442
+ | 18.0 | 2016 | - | 0.9461 |
443
+ | 19.0 | 2128 | - | 0.9461 |
444
+
445
+
446
+ ### Framework Versions
447
+ - Python: 3.10.16
448
+ - Sentence Transformers: 4.1.0
449
+ - Transformers: 4.51.3
450
+ - PyTorch: 2.7.0
451
+ - Accelerate: 1.6.0
452
+ - Datasets: 3.5.0
453
+ - Tokenizers: 0.21.1
454
+
455
+ ## Citation
456
+
457
+ ### BibTeX
458
+
459
+ #### Sentence Transformers
460
+ ```bibtex
461
+ @inproceedings{reimers-2019-sentence-bert,
462
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
463
+ author = "Reimers, Nils and Gurevych, Iryna",
464
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
465
+ month = "11",
466
+ year = "2019",
467
+ publisher = "Association for Computational Linguistics",
468
+ url = "https://arxiv.org/abs/1908.10084",
469
+ }
470
+ ```
471
+
472
+ #### MultipleNegativesRankingLoss
473
+ ```bibtex
474
+ @misc{henderson2017efficient,
475
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
476
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
477
+ year={2017},
478
+ eprint={1705.00652},
479
+ archivePrefix={arXiv},
480
+ primaryClass={cs.CL}
481
+ }
482
+ ```
483
+
484
+ <!--
485
+ ## Glossary
486
+
487
+ *Clearly define terms in order to be accessible across audiences.*
488
+ -->
489
+
490
+ <!--
491
+ ## Model Card Authors
492
+
493
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
494
+ -->
495
+
496
+ <!--
497
+ ## Model Card Contact
498
+
499
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
500
+ -->
checkpoint-2240/config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "T5EncoderModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoModel": "jinaai/jina-embedding-b-en-v1--modeling_t5.T5EncoderModel"
7
+ },
8
+ "classifier_dropout": 0.0,
9
+ "d_ff": 3072,
10
+ "d_kv": 64,
11
+ "d_model": 768,
12
+ "decoder_start_token_id": 0,
13
+ "dense_act_fn": "relu",
14
+ "dropout_rate": 0.1,
15
+ "eos_token_id": 1,
16
+ "feed_forward_proj": "relu",
17
+ "initializer_factor": 1.0,
18
+ "is_encoder_decoder": true,
19
+ "is_gated_act": false,
20
+ "layer_norm_epsilon": 1e-06,
21
+ "model_type": "t5",
22
+ "n_positions": 512,
23
+ "num_decoder_layers": 12,
24
+ "num_heads": 12,
25
+ "num_layers": 12,
26
+ "output_past": true,
27
+ "pad_token_id": 0,
28
+ "relative_attention_max_distance": 128,
29
+ "relative_attention_num_buckets": 32,
30
+ "task_specific_params": {
31
+ "summarization": {
32
+ "early_stopping": true,
33
+ "length_penalty": 2.0,
34
+ "max_length": 200,
35
+ "min_length": 30,
36
+ "no_repeat_ngram_size": 3,
37
+ "num_beams": 4,
38
+ "prefix": "summarize: "
39
+ },
40
+ "translation_en_to_de": {
41
+ "early_stopping": true,
42
+ "max_length": 300,
43
+ "num_beams": 4,
44
+ "prefix": "translate English to German: "
45
+ },
46
+ "translation_en_to_fr": {
47
+ "early_stopping": true,
48
+ "max_length": 300,
49
+ "num_beams": 4,
50
+ "prefix": "translate English to French: "
51
+ },
52
+ "translation_en_to_ro": {
53
+ "early_stopping": true,
54
+ "max_length": 300,
55
+ "num_beams": 4,
56
+ "prefix": "translate English to Romanian: "
57
+ }
58
+ },
59
+ "torch_dtype": "float32",
60
+ "transformers_version": "4.51.3",
61
+ "use_cache": true,
62
+ "vocab_size": 32128
63
+ }
checkpoint-2240/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.7.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-2240/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb56e65fe8cf159bf8ca6e65622c039d97e2b3e0257a1b1a0dd91967052f899d
3
+ size 438525864
checkpoint-2240/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
checkpoint-2240/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c315e82c55893ec49d6185a32c1757f33f8d0c822888b5b4b040c38e926b1180
3
+ size 877109707
checkpoint-2240/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02a192f1304659261b66e1d98cf412aa739e80427eec32221eba5ebf8d094c26
3
+ size 14391
checkpoint-2240/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b9552640135a0d2ce97633c54fa0af0b58ebe243c1ca56baa43d52a39137e6b
3
+ size 1465
checkpoint-2240/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
checkpoint-2240/special_tokens_map.json ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<extra_id_0>",
4
+ "<extra_id_1>",
5
+ "<extra_id_2>",
6
+ "<extra_id_3>",
7
+ "<extra_id_4>",
8
+ "<extra_id_5>",
9
+ "<extra_id_6>",
10
+ "<extra_id_7>",
11
+ "<extra_id_8>",
12
+ "<extra_id_9>",
13
+ "<extra_id_10>",
14
+ "<extra_id_11>",
15
+ "<extra_id_12>",
16
+ "<extra_id_13>",
17
+ "<extra_id_14>",
18
+ "<extra_id_15>",
19
+ "<extra_id_16>",
20
+ "<extra_id_17>",
21
+ "<extra_id_18>",
22
+ "<extra_id_19>",
23
+ "<extra_id_20>",
24
+ "<extra_id_21>",
25
+ "<extra_id_22>",
26
+ "<extra_id_23>",
27
+ "<extra_id_24>",
28
+ "<extra_id_25>",
29
+ "<extra_id_26>",
30
+ "<extra_id_27>",
31
+ "<extra_id_28>",
32
+ "<extra_id_29>",
33
+ "<extra_id_30>",
34
+ "<extra_id_31>",
35
+ "<extra_id_32>",
36
+ "<extra_id_33>",
37
+ "<extra_id_34>",
38
+ "<extra_id_35>",
39
+ "<extra_id_36>",
40
+ "<extra_id_37>",
41
+ "<extra_id_38>",
42
+ "<extra_id_39>",
43
+ "<extra_id_40>",
44
+ "<extra_id_41>",
45
+ "<extra_id_42>",
46
+ "<extra_id_43>",
47
+ "<extra_id_44>",
48
+ "<extra_id_45>",
49
+ "<extra_id_46>",
50
+ "<extra_id_47>",
51
+ "<extra_id_48>",
52
+ "<extra_id_49>",
53
+ "<extra_id_50>",
54
+ "<extra_id_51>",
55
+ "<extra_id_52>",
56
+ "<extra_id_53>",
57
+ "<extra_id_54>",
58
+ "<extra_id_55>",
59
+ "<extra_id_56>",
60
+ "<extra_id_57>",
61
+ "<extra_id_58>",
62
+ "<extra_id_59>",
63
+ "<extra_id_60>",
64
+ "<extra_id_61>",
65
+ "<extra_id_62>",
66
+ "<extra_id_63>",
67
+ "<extra_id_64>",
68
+ "<extra_id_65>",
69
+ "<extra_id_66>",
70
+ "<extra_id_67>",
71
+ "<extra_id_68>",
72
+ "<extra_id_69>",
73
+ "<extra_id_70>",
74
+ "<extra_id_71>",
75
+ "<extra_id_72>",
76
+ "<extra_id_73>",
77
+ "<extra_id_74>",
78
+ "<extra_id_75>",
79
+ "<extra_id_76>",
80
+ "<extra_id_77>",
81
+ "<extra_id_78>",
82
+ "<extra_id_79>",
83
+ "<extra_id_80>",
84
+ "<extra_id_81>",
85
+ "<extra_id_82>",
86
+ "<extra_id_83>",
87
+ "<extra_id_84>",
88
+ "<extra_id_85>",
89
+ "<extra_id_86>",
90
+ "<extra_id_87>",
91
+ "<extra_id_88>",
92
+ "<extra_id_89>",
93
+ "<extra_id_90>",
94
+ "<extra_id_91>",
95
+ "<extra_id_92>",
96
+ "<extra_id_93>",
97
+ "<extra_id_94>",
98
+ "<extra_id_95>",
99
+ "<extra_id_96>",
100
+ "<extra_id_97>",
101
+ "<extra_id_98>",
102
+ "<extra_id_99>"
103
+ ],
104
+ "eos_token": {
105
+ "content": "</s>",
106
+ "lstrip": false,
107
+ "normalized": false,
108
+ "rstrip": false,
109
+ "single_word": false
110
+ },
111
+ "pad_token": {
112
+ "content": "<pad>",
113
+ "lstrip": false,
114
+ "normalized": false,
115
+ "rstrip": false,
116
+ "single_word": false
117
+ },
118
+ "unk_token": {
119
+ "content": "<unk>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false
124
+ }
125
+ }
checkpoint-2240/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2240/tokenizer_config.json ADDED
@@ -0,0 +1,939 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": null,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<pad>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "</s>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "<unk>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "32000": {
29
+ "content": "<extra_id_99>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "32001": {
37
+ "content": "<extra_id_98>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "32002": {
45
+ "content": "<extra_id_97>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "32003": {
53
+ "content": "<extra_id_96>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "32004": {
61
+ "content": "<extra_id_95>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "32005": {
69
+ "content": "<extra_id_94>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "32006": {
77
+ "content": "<extra_id_93>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "32007": {
85
+ "content": "<extra_id_92>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "32008": {
93
+ "content": "<extra_id_91>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "32009": {
101
+ "content": "<extra_id_90>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "32010": {
109
+ "content": "<extra_id_89>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "32011": {
117
+ "content": "<extra_id_88>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "32012": {
125
+ "content": "<extra_id_87>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "32013": {
133
+ "content": "<extra_id_86>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "32014": {
141
+ "content": "<extra_id_85>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "32015": {
149
+ "content": "<extra_id_84>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "32016": {
157
+ "content": "<extra_id_83>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "32017": {
165
+ "content": "<extra_id_82>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "32018": {
173
+ "content": "<extra_id_81>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "32019": {
181
+ "content": "<extra_id_80>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "32020": {
189
+ "content": "<extra_id_79>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "32021": {
197
+ "content": "<extra_id_78>",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "32022": {
205
+ "content": "<extra_id_77>",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "32023": {
213
+ "content": "<extra_id_76>",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "32024": {
221
+ "content": "<extra_id_75>",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "32025": {
229
+ "content": "<extra_id_74>",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "32026": {
237
+ "content": "<extra_id_73>",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "32027": {
245
+ "content": "<extra_id_72>",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "32028": {
253
+ "content": "<extra_id_71>",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "32029": {
261
+ "content": "<extra_id_70>",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "32030": {
269
+ "content": "<extra_id_69>",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "32031": {
277
+ "content": "<extra_id_68>",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "32032": {
285
+ "content": "<extra_id_67>",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "32033": {
293
+ "content": "<extra_id_66>",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "32034": {
301
+ "content": "<extra_id_65>",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": true
307
+ },
308
+ "32035": {
309
+ "content": "<extra_id_64>",
310
+ "lstrip": false,
311
+ "normalized": false,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": true
315
+ },
316
+ "32036": {
317
+ "content": "<extra_id_63>",
318
+ "lstrip": false,
319
+ "normalized": false,
320
+ "rstrip": false,
321
+ "single_word": false,
322
+ "special": true
323
+ },
324
+ "32037": {
325
+ "content": "<extra_id_62>",
326
+ "lstrip": false,
327
+ "normalized": false,
328
+ "rstrip": false,
329
+ "single_word": false,
330
+ "special": true
331
+ },
332
+ "32038": {
333
+ "content": "<extra_id_61>",
334
+ "lstrip": false,
335
+ "normalized": false,
336
+ "rstrip": false,
337
+ "single_word": false,
338
+ "special": true
339
+ },
340
+ "32039": {
341
+ "content": "<extra_id_60>",
342
+ "lstrip": false,
343
+ "normalized": false,
344
+ "rstrip": false,
345
+ "single_word": false,
346
+ "special": true
347
+ },
348
+ "32040": {
349
+ "content": "<extra_id_59>",
350
+ "lstrip": false,
351
+ "normalized": false,
352
+ "rstrip": false,
353
+ "single_word": false,
354
+ "special": true
355
+ },
356
+ "32041": {
357
+ "content": "<extra_id_58>",
358
+ "lstrip": false,
359
+ "normalized": false,
360
+ "rstrip": false,
361
+ "single_word": false,
362
+ "special": true
363
+ },
364
+ "32042": {
365
+ "content": "<extra_id_57>",
366
+ "lstrip": false,
367
+ "normalized": false,
368
+ "rstrip": false,
369
+ "single_word": false,
370
+ "special": true
371
+ },
372
+ "32043": {
373
+ "content": "<extra_id_56>",
374
+ "lstrip": false,
375
+ "normalized": false,
376
+ "rstrip": false,
377
+ "single_word": false,
378
+ "special": true
379
+ },
380
+ "32044": {
381
+ "content": "<extra_id_55>",
382
+ "lstrip": false,
383
+ "normalized": false,
384
+ "rstrip": false,
385
+ "single_word": false,
386
+ "special": true
387
+ },
388
+ "32045": {
389
+ "content": "<extra_id_54>",
390
+ "lstrip": false,
391
+ "normalized": false,
392
+ "rstrip": false,
393
+ "single_word": false,
394
+ "special": true
395
+ },
396
+ "32046": {
397
+ "content": "<extra_id_53>",
398
+ "lstrip": false,
399
+ "normalized": false,
400
+ "rstrip": false,
401
+ "single_word": false,
402
+ "special": true
403
+ },
404
+ "32047": {
405
+ "content": "<extra_id_52>",
406
+ "lstrip": false,
407
+ "normalized": false,
408
+ "rstrip": false,
409
+ "single_word": false,
410
+ "special": true
411
+ },
412
+ "32048": {
413
+ "content": "<extra_id_51>",
414
+ "lstrip": false,
415
+ "normalized": false,
416
+ "rstrip": false,
417
+ "single_word": false,
418
+ "special": true
419
+ },
420
+ "32049": {
421
+ "content": "<extra_id_50>",
422
+ "lstrip": false,
423
+ "normalized": false,
424
+ "rstrip": false,
425
+ "single_word": false,
426
+ "special": true
427
+ },
428
+ "32050": {
429
+ "content": "<extra_id_49>",
430
+ "lstrip": false,
431
+ "normalized": false,
432
+ "rstrip": false,
433
+ "single_word": false,
434
+ "special": true
435
+ },
436
+ "32051": {
437
+ "content": "<extra_id_48>",
438
+ "lstrip": false,
439
+ "normalized": false,
440
+ "rstrip": false,
441
+ "single_word": false,
442
+ "special": true
443
+ },
444
+ "32052": {
445
+ "content": "<extra_id_47>",
446
+ "lstrip": false,
447
+ "normalized": false,
448
+ "rstrip": false,
449
+ "single_word": false,
450
+ "special": true
451
+ },
452
+ "32053": {
453
+ "content": "<extra_id_46>",
454
+ "lstrip": false,
455
+ "normalized": false,
456
+ "rstrip": false,
457
+ "single_word": false,
458
+ "special": true
459
+ },
460
+ "32054": {
461
+ "content": "<extra_id_45>",
462
+ "lstrip": false,
463
+ "normalized": false,
464
+ "rstrip": false,
465
+ "single_word": false,
466
+ "special": true
467
+ },
468
+ "32055": {
469
+ "content": "<extra_id_44>",
470
+ "lstrip": false,
471
+ "normalized": false,
472
+ "rstrip": false,
473
+ "single_word": false,
474
+ "special": true
475
+ },
476
+ "32056": {
477
+ "content": "<extra_id_43>",
478
+ "lstrip": false,
479
+ "normalized": false,
480
+ "rstrip": false,
481
+ "single_word": false,
482
+ "special": true
483
+ },
484
+ "32057": {
485
+ "content": "<extra_id_42>",
486
+ "lstrip": false,
487
+ "normalized": false,
488
+ "rstrip": false,
489
+ "single_word": false,
490
+ "special": true
491
+ },
492
+ "32058": {
493
+ "content": "<extra_id_41>",
494
+ "lstrip": false,
495
+ "normalized": false,
496
+ "rstrip": false,
497
+ "single_word": false,
498
+ "special": true
499
+ },
500
+ "32059": {
501
+ "content": "<extra_id_40>",
502
+ "lstrip": false,
503
+ "normalized": false,
504
+ "rstrip": false,
505
+ "single_word": false,
506
+ "special": true
507
+ },
508
+ "32060": {
509
+ "content": "<extra_id_39>",
510
+ "lstrip": false,
511
+ "normalized": false,
512
+ "rstrip": false,
513
+ "single_word": false,
514
+ "special": true
515
+ },
516
+ "32061": {
517
+ "content": "<extra_id_38>",
518
+ "lstrip": false,
519
+ "normalized": false,
520
+ "rstrip": false,
521
+ "single_word": false,
522
+ "special": true
523
+ },
524
+ "32062": {
525
+ "content": "<extra_id_37>",
526
+ "lstrip": false,
527
+ "normalized": false,
528
+ "rstrip": false,
529
+ "single_word": false,
530
+ "special": true
531
+ },
532
+ "32063": {
533
+ "content": "<extra_id_36>",
534
+ "lstrip": false,
535
+ "normalized": false,
536
+ "rstrip": false,
537
+ "single_word": false,
538
+ "special": true
539
+ },
540
+ "32064": {
541
+ "content": "<extra_id_35>",
542
+ "lstrip": false,
543
+ "normalized": false,
544
+ "rstrip": false,
545
+ "single_word": false,
546
+ "special": true
547
+ },
548
+ "32065": {
549
+ "content": "<extra_id_34>",
550
+ "lstrip": false,
551
+ "normalized": false,
552
+ "rstrip": false,
553
+ "single_word": false,
554
+ "special": true
555
+ },
556
+ "32066": {
557
+ "content": "<extra_id_33>",
558
+ "lstrip": false,
559
+ "normalized": false,
560
+ "rstrip": false,
561
+ "single_word": false,
562
+ "special": true
563
+ },
564
+ "32067": {
565
+ "content": "<extra_id_32>",
566
+ "lstrip": false,
567
+ "normalized": false,
568
+ "rstrip": false,
569
+ "single_word": false,
570
+ "special": true
571
+ },
572
+ "32068": {
573
+ "content": "<extra_id_31>",
574
+ "lstrip": false,
575
+ "normalized": false,
576
+ "rstrip": false,
577
+ "single_word": false,
578
+ "special": true
579
+ },
580
+ "32069": {
581
+ "content": "<extra_id_30>",
582
+ "lstrip": false,
583
+ "normalized": false,
584
+ "rstrip": false,
585
+ "single_word": false,
586
+ "special": true
587
+ },
588
+ "32070": {
589
+ "content": "<extra_id_29>",
590
+ "lstrip": false,
591
+ "normalized": false,
592
+ "rstrip": false,
593
+ "single_word": false,
594
+ "special": true
595
+ },
596
+ "32071": {
597
+ "content": "<extra_id_28>",
598
+ "lstrip": false,
599
+ "normalized": false,
600
+ "rstrip": false,
601
+ "single_word": false,
602
+ "special": true
603
+ },
604
+ "32072": {
605
+ "content": "<extra_id_27>",
606
+ "lstrip": false,
607
+ "normalized": false,
608
+ "rstrip": false,
609
+ "single_word": false,
610
+ "special": true
611
+ },
612
+ "32073": {
613
+ "content": "<extra_id_26>",
614
+ "lstrip": false,
615
+ "normalized": false,
616
+ "rstrip": false,
617
+ "single_word": false,
618
+ "special": true
619
+ },
620
+ "32074": {
621
+ "content": "<extra_id_25>",
622
+ "lstrip": false,
623
+ "normalized": false,
624
+ "rstrip": false,
625
+ "single_word": false,
626
+ "special": true
627
+ },
628
+ "32075": {
629
+ "content": "<extra_id_24>",
630
+ "lstrip": false,
631
+ "normalized": false,
632
+ "rstrip": false,
633
+ "single_word": false,
634
+ "special": true
635
+ },
636
+ "32076": {
637
+ "content": "<extra_id_23>",
638
+ "lstrip": false,
639
+ "normalized": false,
640
+ "rstrip": false,
641
+ "single_word": false,
642
+ "special": true
643
+ },
644
+ "32077": {
645
+ "content": "<extra_id_22>",
646
+ "lstrip": false,
647
+ "normalized": false,
648
+ "rstrip": false,
649
+ "single_word": false,
650
+ "special": true
651
+ },
652
+ "32078": {
653
+ "content": "<extra_id_21>",
654
+ "lstrip": false,
655
+ "normalized": false,
656
+ "rstrip": false,
657
+ "single_word": false,
658
+ "special": true
659
+ },
660
+ "32079": {
661
+ "content": "<extra_id_20>",
662
+ "lstrip": false,
663
+ "normalized": false,
664
+ "rstrip": false,
665
+ "single_word": false,
666
+ "special": true
667
+ },
668
+ "32080": {
669
+ "content": "<extra_id_19>",
670
+ "lstrip": false,
671
+ "normalized": false,
672
+ "rstrip": false,
673
+ "single_word": false,
674
+ "special": true
675
+ },
676
+ "32081": {
677
+ "content": "<extra_id_18>",
678
+ "lstrip": false,
679
+ "normalized": false,
680
+ "rstrip": false,
681
+ "single_word": false,
682
+ "special": true
683
+ },
684
+ "32082": {
685
+ "content": "<extra_id_17>",
686
+ "lstrip": false,
687
+ "normalized": false,
688
+ "rstrip": false,
689
+ "single_word": false,
690
+ "special": true
691
+ },
692
+ "32083": {
693
+ "content": "<extra_id_16>",
694
+ "lstrip": false,
695
+ "normalized": false,
696
+ "rstrip": false,
697
+ "single_word": false,
698
+ "special": true
699
+ },
700
+ "32084": {
701
+ "content": "<extra_id_15>",
702
+ "lstrip": false,
703
+ "normalized": false,
704
+ "rstrip": false,
705
+ "single_word": false,
706
+ "special": true
707
+ },
708
+ "32085": {
709
+ "content": "<extra_id_14>",
710
+ "lstrip": false,
711
+ "normalized": false,
712
+ "rstrip": false,
713
+ "single_word": false,
714
+ "special": true
715
+ },
716
+ "32086": {
717
+ "content": "<extra_id_13>",
718
+ "lstrip": false,
719
+ "normalized": false,
720
+ "rstrip": false,
721
+ "single_word": false,
722
+ "special": true
723
+ },
724
+ "32087": {
725
+ "content": "<extra_id_12>",
726
+ "lstrip": false,
727
+ "normalized": false,
728
+ "rstrip": false,
729
+ "single_word": false,
730
+ "special": true
731
+ },
732
+ "32088": {
733
+ "content": "<extra_id_11>",
734
+ "lstrip": false,
735
+ "normalized": false,
736
+ "rstrip": false,
737
+ "single_word": false,
738
+ "special": true
739
+ },
740
+ "32089": {
741
+ "content": "<extra_id_10>",
742
+ "lstrip": false,
743
+ "normalized": false,
744
+ "rstrip": false,
745
+ "single_word": false,
746
+ "special": true
747
+ },
748
+ "32090": {
749
+ "content": "<extra_id_9>",
750
+ "lstrip": false,
751
+ "normalized": false,
752
+ "rstrip": false,
753
+ "single_word": false,
754
+ "special": true
755
+ },
756
+ "32091": {
757
+ "content": "<extra_id_8>",
758
+ "lstrip": false,
759
+ "normalized": false,
760
+ "rstrip": false,
761
+ "single_word": false,
762
+ "special": true
763
+ },
764
+ "32092": {
765
+ "content": "<extra_id_7>",
766
+ "lstrip": false,
767
+ "normalized": false,
768
+ "rstrip": false,
769
+ "single_word": false,
770
+ "special": true
771
+ },
772
+ "32093": {
773
+ "content": "<extra_id_6>",
774
+ "lstrip": false,
775
+ "normalized": false,
776
+ "rstrip": false,
777
+ "single_word": false,
778
+ "special": true
779
+ },
780
+ "32094": {
781
+ "content": "<extra_id_5>",
782
+ "lstrip": false,
783
+ "normalized": false,
784
+ "rstrip": false,
785
+ "single_word": false,
786
+ "special": true
787
+ },
788
+ "32095": {
789
+ "content": "<extra_id_4>",
790
+ "lstrip": false,
791
+ "normalized": false,
792
+ "rstrip": false,
793
+ "single_word": false,
794
+ "special": true
795
+ },
796
+ "32096": {
797
+ "content": "<extra_id_3>",
798
+ "lstrip": false,
799
+ "normalized": false,
800
+ "rstrip": false,
801
+ "single_word": false,
802
+ "special": true
803
+ },
804
+ "32097": {
805
+ "content": "<extra_id_2>",
806
+ "lstrip": false,
807
+ "normalized": false,
808
+ "rstrip": false,
809
+ "single_word": false,
810
+ "special": true
811
+ },
812
+ "32098": {
813
+ "content": "<extra_id_1>",
814
+ "lstrip": false,
815
+ "normalized": false,
816
+ "rstrip": false,
817
+ "single_word": false,
818
+ "special": true
819
+ },
820
+ "32099": {
821
+ "content": "<extra_id_0>",
822
+ "lstrip": false,
823
+ "normalized": false,
824
+ "rstrip": false,
825
+ "single_word": false,
826
+ "special": true
827
+ }
828
+ },
829
+ "additional_special_tokens": [
830
+ "<extra_id_0>",
831
+ "<extra_id_1>",
832
+ "<extra_id_2>",
833
+ "<extra_id_3>",
834
+ "<extra_id_4>",
835
+ "<extra_id_5>",
836
+ "<extra_id_6>",
837
+ "<extra_id_7>",
838
+ "<extra_id_8>",
839
+ "<extra_id_9>",
840
+ "<extra_id_10>",
841
+ "<extra_id_11>",
842
+ "<extra_id_12>",
843
+ "<extra_id_13>",
844
+ "<extra_id_14>",
845
+ "<extra_id_15>",
846
+ "<extra_id_16>",
847
+ "<extra_id_17>",
848
+ "<extra_id_18>",
849
+ "<extra_id_19>",
850
+ "<extra_id_20>",
851
+ "<extra_id_21>",
852
+ "<extra_id_22>",
853
+ "<extra_id_23>",
854
+ "<extra_id_24>",
855
+ "<extra_id_25>",
856
+ "<extra_id_26>",
857
+ "<extra_id_27>",
858
+ "<extra_id_28>",
859
+ "<extra_id_29>",
860
+ "<extra_id_30>",
861
+ "<extra_id_31>",
862
+ "<extra_id_32>",
863
+ "<extra_id_33>",
864
+ "<extra_id_34>",
865
+ "<extra_id_35>",
866
+ "<extra_id_36>",
867
+ "<extra_id_37>",
868
+ "<extra_id_38>",
869
+ "<extra_id_39>",
870
+ "<extra_id_40>",
871
+ "<extra_id_41>",
872
+ "<extra_id_42>",
873
+ "<extra_id_43>",
874
+ "<extra_id_44>",
875
+ "<extra_id_45>",
876
+ "<extra_id_46>",
877
+ "<extra_id_47>",
878
+ "<extra_id_48>",
879
+ "<extra_id_49>",
880
+ "<extra_id_50>",
881
+ "<extra_id_51>",
882
+ "<extra_id_52>",
883
+ "<extra_id_53>",
884
+ "<extra_id_54>",
885
+ "<extra_id_55>",
886
+ "<extra_id_56>",
887
+ "<extra_id_57>",
888
+ "<extra_id_58>",
889
+ "<extra_id_59>",
890
+ "<extra_id_60>",
891
+ "<extra_id_61>",
892
+ "<extra_id_62>",
893
+ "<extra_id_63>",
894
+ "<extra_id_64>",
895
+ "<extra_id_65>",
896
+ "<extra_id_66>",
897
+ "<extra_id_67>",
898
+ "<extra_id_68>",
899
+ "<extra_id_69>",
900
+ "<extra_id_70>",
901
+ "<extra_id_71>",
902
+ "<extra_id_72>",
903
+ "<extra_id_73>",
904
+ "<extra_id_74>",
905
+ "<extra_id_75>",
906
+ "<extra_id_76>",
907
+ "<extra_id_77>",
908
+ "<extra_id_78>",
909
+ "<extra_id_79>",
910
+ "<extra_id_80>",
911
+ "<extra_id_81>",
912
+ "<extra_id_82>",
913
+ "<extra_id_83>",
914
+ "<extra_id_84>",
915
+ "<extra_id_85>",
916
+ "<extra_id_86>",
917
+ "<extra_id_87>",
918
+ "<extra_id_88>",
919
+ "<extra_id_89>",
920
+ "<extra_id_90>",
921
+ "<extra_id_91>",
922
+ "<extra_id_92>",
923
+ "<extra_id_93>",
924
+ "<extra_id_94>",
925
+ "<extra_id_95>",
926
+ "<extra_id_96>",
927
+ "<extra_id_97>",
928
+ "<extra_id_98>",
929
+ "<extra_id_99>"
930
+ ],
931
+ "clean_up_tokenization_spaces": true,
932
+ "eos_token": "</s>",
933
+ "extra_ids": 100,
934
+ "extra_special_tokens": {},
935
+ "model_max_length": 512,
936
+ "pad_token": "<pad>",
937
+ "tokenizer_class": "T5Tokenizer",
938
+ "unk_token": "<unk>"
939
+ }
checkpoint-2240/trainer_state.json ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 20.0,
6
+ "eval_steps": 500,
7
+ "global_step": 2240,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 4.464285714285714,
14
+ "grad_norm": 0.21455785632133484,
15
+ "learning_rate": 9.980000000000001e-06,
16
+ "loss": 0.1949,
17
+ "step": 500
18
+ },
19
+ {
20
+ "epoch": 4.464285714285714,
21
+ "eval_runtime": 0.9738,
22
+ "eval_samples_per_second": 0.0,
23
+ "eval_steps_per_second": 0.0,
24
+ "eval_test-eval_cosine_accuracy@1": 0.8519553072625698,
25
+ "eval_test-eval_cosine_accuracy@10": 1.0,
26
+ "eval_test-eval_cosine_accuracy@3": 0.9748603351955307,
27
+ "eval_test-eval_cosine_accuracy@5": 0.9888268156424581,
28
+ "eval_test-eval_cosine_map@100": 0.9115068280571075,
29
+ "eval_test-eval_cosine_mrr@10": 0.9115068280571073,
30
+ "eval_test-eval_cosine_ndcg@10": 0.9336742870997445,
31
+ "eval_test-eval_cosine_precision@1": 0.8519553072625698,
32
+ "eval_test-eval_cosine_precision@10": 0.09999999999999999,
33
+ "eval_test-eval_cosine_precision@3": 0.3249534450651769,
34
+ "eval_test-eval_cosine_precision@5": 0.19776536312849158,
35
+ "eval_test-eval_cosine_recall@1": 0.8519553072625698,
36
+ "eval_test-eval_cosine_recall@10": 1.0,
37
+ "eval_test-eval_cosine_recall@3": 0.9748603351955307,
38
+ "eval_test-eval_cosine_recall@5": 0.9888268156424581,
39
+ "step": 500
40
+ },
41
+ {
42
+ "epoch": 8.928571428571429,
43
+ "grad_norm": 0.14167314767837524,
44
+ "learning_rate": 1.9980000000000002e-05,
45
+ "loss": 0.1347,
46
+ "step": 1000
47
+ },
48
+ {
49
+ "epoch": 8.928571428571429,
50
+ "eval_runtime": 1.0193,
51
+ "eval_samples_per_second": 0.0,
52
+ "eval_steps_per_second": 0.0,
53
+ "eval_test-eval_cosine_accuracy@1": 0.8687150837988827,
54
+ "eval_test-eval_cosine_accuracy@10": 1.0,
55
+ "eval_test-eval_cosine_accuracy@3": 0.9916201117318436,
56
+ "eval_test-eval_cosine_accuracy@5": 1.0,
57
+ "eval_test-eval_cosine_map@100": 0.9263966480446927,
58
+ "eval_test-eval_cosine_mrr@10": 0.9263966480446925,
59
+ "eval_test-eval_cosine_ndcg@10": 0.9452350119743832,
60
+ "eval_test-eval_cosine_precision@1": 0.8687150837988827,
61
+ "eval_test-eval_cosine_precision@10": 0.09999999999999999,
62
+ "eval_test-eval_cosine_precision@3": 0.33054003724394787,
63
+ "eval_test-eval_cosine_precision@5": 0.19999999999999998,
64
+ "eval_test-eval_cosine_recall@1": 0.8687150837988827,
65
+ "eval_test-eval_cosine_recall@10": 1.0,
66
+ "eval_test-eval_cosine_recall@3": 0.9916201117318436,
67
+ "eval_test-eval_cosine_recall@5": 1.0,
68
+ "step": 1000
69
+ },
70
+ {
71
+ "epoch": 13.392857142857142,
72
+ "grad_norm": 0.1641000360250473,
73
+ "learning_rate": 0.0,
74
+ "loss": 0.1193,
75
+ "step": 1500
76
+ },
77
+ {
78
+ "epoch": 13.392857142857142,
79
+ "eval_runtime": 0.9947,
80
+ "eval_samples_per_second": 0.0,
81
+ "eval_steps_per_second": 0.0,
82
+ "eval_test-eval_cosine_accuracy@1": 0.8659217877094972,
83
+ "eval_test-eval_cosine_accuracy@10": 1.0,
84
+ "eval_test-eval_cosine_accuracy@3": 0.9916201117318436,
85
+ "eval_test-eval_cosine_accuracy@5": 0.9972067039106145,
86
+ "eval_test-eval_cosine_map@100": 0.9273743016759777,
87
+ "eval_test-eval_cosine_mrr@10": 0.9273743016759775,
88
+ "eval_test-eval_cosine_ndcg@10": 0.9460695277624867,
89
+ "eval_test-eval_cosine_precision@1": 0.8659217877094972,
90
+ "eval_test-eval_cosine_precision@10": 0.09999999999999999,
91
+ "eval_test-eval_cosine_precision@3": 0.33054003724394787,
92
+ "eval_test-eval_cosine_precision@5": 0.1994413407821229,
93
+ "eval_test-eval_cosine_recall@1": 0.8659217877094972,
94
+ "eval_test-eval_cosine_recall@10": 1.0,
95
+ "eval_test-eval_cosine_recall@3": 0.9916201117318436,
96
+ "eval_test-eval_cosine_recall@5": 0.9972067039106145,
97
+ "step": 1500
98
+ },
99
+ {
100
+ "epoch": 17.857142857142858,
101
+ "grad_norm": 0.13586528599262238,
102
+ "learning_rate": 0.0,
103
+ "loss": 0.117,
104
+ "step": 2000
105
+ },
106
+ {
107
+ "epoch": 17.857142857142858,
108
+ "eval_runtime": 1.0029,
109
+ "eval_samples_per_second": 0.0,
110
+ "eval_steps_per_second": 0.0,
111
+ "eval_test-eval_cosine_accuracy@1": 0.8659217877094972,
112
+ "eval_test-eval_cosine_accuracy@10": 1.0,
113
+ "eval_test-eval_cosine_accuracy@3": 0.9916201117318436,
114
+ "eval_test-eval_cosine_accuracy@5": 0.9972067039106145,
115
+ "eval_test-eval_cosine_map@100": 0.9273743016759777,
116
+ "eval_test-eval_cosine_mrr@10": 0.9273743016759775,
117
+ "eval_test-eval_cosine_ndcg@10": 0.9460695277624867,
118
+ "eval_test-eval_cosine_precision@1": 0.8659217877094972,
119
+ "eval_test-eval_cosine_precision@10": 0.09999999999999999,
120
+ "eval_test-eval_cosine_precision@3": 0.33054003724394787,
121
+ "eval_test-eval_cosine_precision@5": 0.1994413407821229,
122
+ "eval_test-eval_cosine_recall@1": 0.8659217877094972,
123
+ "eval_test-eval_cosine_recall@10": 1.0,
124
+ "eval_test-eval_cosine_recall@3": 0.9916201117318436,
125
+ "eval_test-eval_cosine_recall@5": 0.9972067039106145,
126
+ "step": 2000
127
+ }
128
+ ],
129
+ "logging_steps": 500,
130
+ "max_steps": 2240,
131
+ "num_input_tokens_seen": 0,
132
+ "num_train_epochs": 20,
133
+ "save_steps": 500,
134
+ "stateful_callbacks": {
135
+ "TrainerControl": {
136
+ "args": {
137
+ "should_epoch_stop": false,
138
+ "should_evaluate": false,
139
+ "should_log": false,
140
+ "should_save": true,
141
+ "should_training_stop": true
142
+ },
143
+ "attributes": {}
144
+ }
145
+ },
146
+ "total_flos": 0.0,
147
+ "train_batch_size": 32,
148
+ "trial_name": null,
149
+ "trial_params": null
150
+ }
checkpoint-2240/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8113057c063a9fba7c908f4ac5f8c48670c939029876431a25ddf68d5ade8d48
3
+ size 5969
config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "T5EncoderModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoModel": "jinaai/jina-embedding-b-en-v1--modeling_t5.T5EncoderModel"
7
+ },
8
+ "classifier_dropout": 0.0,
9
+ "d_ff": 3072,
10
+ "d_kv": 64,
11
+ "d_model": 768,
12
+ "decoder_start_token_id": 0,
13
+ "dense_act_fn": "relu",
14
+ "dropout_rate": 0.1,
15
+ "eos_token_id": 1,
16
+ "feed_forward_proj": "relu",
17
+ "initializer_factor": 1.0,
18
+ "is_encoder_decoder": true,
19
+ "is_gated_act": false,
20
+ "layer_norm_epsilon": 1e-06,
21
+ "model_type": "t5",
22
+ "n_positions": 512,
23
+ "num_decoder_layers": 12,
24
+ "num_heads": 12,
25
+ "num_layers": 12,
26
+ "output_past": true,
27
+ "pad_token_id": 0,
28
+ "relative_attention_max_distance": 128,
29
+ "relative_attention_num_buckets": 32,
30
+ "task_specific_params": {
31
+ "summarization": {
32
+ "early_stopping": true,
33
+ "length_penalty": 2.0,
34
+ "max_length": 200,
35
+ "min_length": 30,
36
+ "no_repeat_ngram_size": 3,
37
+ "num_beams": 4,
38
+ "prefix": "summarize: "
39
+ },
40
+ "translation_en_to_de": {
41
+ "early_stopping": true,
42
+ "max_length": 300,
43
+ "num_beams": 4,
44
+ "prefix": "translate English to German: "
45
+ },
46
+ "translation_en_to_fr": {
47
+ "early_stopping": true,
48
+ "max_length": 300,
49
+ "num_beams": 4,
50
+ "prefix": "translate English to French: "
51
+ },
52
+ "translation_en_to_ro": {
53
+ "early_stopping": true,
54
+ "max_length": 300,
55
+ "num_beams": 4,
56
+ "prefix": "translate English to Romanian: "
57
+ }
58
+ },
59
+ "torch_dtype": "float32",
60
+ "transformers_version": "4.51.3",
61
+ "use_cache": true,
62
+ "vocab_size": 32128
63
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.7.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
eval/Information-Retrieval_evaluation_test-eval_results.csv ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
+ 1.0,112,0.7988826815642458,0.9385474860335196,0.9636871508379888,0.9888268156424581,0.7988826815642458,0.7988826815642458,0.3128491620111732,0.9385474860335196,0.19273743016759773,0.9636871508379888,0.09888268156424579,0.9888268156424581,0.8724971180278439,0.9013290962380638,0.8729215200848387
3
+ 2.0,224,0.8100558659217877,0.952513966480447,0.9748603351955307,0.994413407821229,0.8100558659217877,0.8100558659217877,0.3175046554934823,0.952513966480447,0.1949720670391061,0.9748603351955307,0.09944134078212288,0.994413407821229,0.8835882770240309,0.9112287400862301,0.8838180481539645
4
+ 3.0,336,0.8324022346368715,0.9664804469273743,0.9804469273743017,0.9972067039106145,0.8324022346368715,0.8324022346368715,0.3221601489757915,0.9664804469273743,0.1960893854748603,0.9804469273743017,0.09972067039106144,0.9972067039106145,0.9007637226212644,0.9249588498705006,0.9009499423605568
5
+ 4.0,448,0.8435754189944135,0.9720670391061452,0.9888268156424581,1.0,0.8435754189944135,0.8435754189944135,0.3240223463687151,0.9720670391061452,0.19776536312849158,0.9888268156424581,0.09999999999999999,1.0,0.9074598740799856,0.930681103518929,0.9074598740799856
6
+ 5.0,560,0.8519553072625698,0.9776536312849162,0.9888268156424581,0.9972067039106145,0.8519553072625698,0.8519553072625698,0.3258845437616387,0.9776536312849162,0.19776536312849158,0.9888268156424581,0.09972067039106144,0.9972067039106145,0.9128569211669768,0.9341576610559545,0.913110857175103
7
+ 6.0,672,0.8547486033519553,0.9804469273743017,0.994413407821229,1.0,0.8547486033519553,0.8547486033519553,0.3268156424581006,0.9804469273743017,0.19888268156424577,0.994413407821229,0.09999999999999999,1.0,0.9171399751707012,0.9381337361421023,0.9171399751707014
8
+ 7.0,784,0.8631284916201117,0.9832402234636871,0.994413407821229,1.0,0.8631284916201117,0.8631284916201117,0.32774674115456237,0.9832402234636871,0.19888268156424577,0.994413407821229,0.09999999999999999,1.0,0.922788640595903,0.9424281345517056,0.9227886405959032
9
+ 8.0,896,0.8603351955307262,0.9916201117318436,0.9972067039106145,1.0,0.8603351955307262,0.8603351955307262,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9228385208832136,0.9426017872344871,0.9228385208832136
10
+ 9.0,1008,0.8687150837988827,0.9916201117318436,1.0,1.0,0.8687150837988827,0.8687150837988827,0.33054003724394787,0.9916201117318436,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9263966480446925,0.9452350119743832,0.9263966480446927
11
+ 10.0,1120,0.8687150837988827,0.9916201117318436,1.0,1.0,0.8687150837988827,0.8687150837988827,0.33054003724394787,0.9916201117318436,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9263966480446925,0.9452350119743832,0.9263966480446927
12
+ 1.0,112,0.7988826815642458,0.9385474860335196,0.9636871508379888,0.9888268156424581,0.7988826815642458,0.7988826815642458,0.3128491620111732,0.9385474860335196,0.19273743016759773,0.9636871508379888,0.09888268156424579,0.9888268156424581,0.8724971180278439,0.9013290962380638,0.8729215200848387
13
+ 2.0,224,0.8100558659217877,0.952513966480447,0.9748603351955307,0.994413407821229,0.8100558659217877,0.8100558659217877,0.3175046554934823,0.952513966480447,0.1949720670391061,0.9748603351955307,0.09944134078212288,0.994413407821229,0.8835882770240309,0.9112287400862301,0.8838180481539645
14
+ 3.0,336,0.8324022346368715,0.9664804469273743,0.9804469273743017,0.9972067039106145,0.8324022346368715,0.8324022346368715,0.3221601489757915,0.9664804469273743,0.1960893854748603,0.9804469273743017,0.09972067039106144,0.9972067039106145,0.9007637226212644,0.9249588498705006,0.9009499423605568
15
+ 4.0,448,0.8435754189944135,0.9720670391061452,0.9888268156424581,1.0,0.8435754189944135,0.8435754189944135,0.3240223463687151,0.9720670391061452,0.19776536312849158,0.9888268156424581,0.09999999999999999,1.0,0.9074598740799856,0.930681103518929,0.9074598740799856
16
+ 4.464285714285714,500,0.8519553072625698,0.9748603351955307,0.9888268156424581,1.0,0.8519553072625698,0.8519553072625698,0.3249534450651769,0.9748603351955307,0.19776536312849158,0.9888268156424581,0.09999999999999999,1.0,0.9115068280571073,0.9336742870997445,0.9115068280571075
17
+ 5.0,560,0.8519553072625698,0.9776536312849162,0.9888268156424581,0.9972067039106145,0.8519553072625698,0.8519553072625698,0.3258845437616387,0.9776536312849162,0.19776536312849158,0.9888268156424581,0.09972067039106144,0.9972067039106145,0.9128569211669768,0.9341576610559545,0.913110857175103
18
+ 6.0,672,0.8547486033519553,0.9804469273743017,0.994413407821229,1.0,0.8547486033519553,0.8547486033519553,0.3268156424581006,0.9804469273743017,0.19888268156424577,0.994413407821229,0.09999999999999999,1.0,0.9171399751707012,0.9381337361421023,0.9171399751707014
19
+ 7.0,784,0.8631284916201117,0.9832402234636871,0.9916201117318436,1.0,0.8631284916201117,0.8631284916201117,0.32774674115456237,0.9832402234636871,0.19832402234636867,0.9916201117318436,0.09999999999999999,1.0,0.922695530726257,0.9423425322608494,0.922695530726257
20
+ 8.0,896,0.8603351955307262,0.9916201117318436,0.9972067039106145,1.0,0.8603351955307262,0.8603351955307262,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9228385208832136,0.9426017872344871,0.9228385208832136
21
+ 8.928571428571429,1000,0.8687150837988827,0.9916201117318436,1.0,1.0,0.8687150837988827,0.8687150837988827,0.33054003724394787,0.9916201117318436,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9263966480446925,0.9452350119743832,0.9263966480446927
22
+ 9.0,1008,0.8687150837988827,0.9916201117318436,1.0,1.0,0.8687150837988827,0.8687150837988827,0.33054003724394787,0.9916201117318436,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9263966480446925,0.9452350119743832,0.9263966480446927
23
+ 10.0,1120,0.8687150837988827,0.9916201117318436,1.0,1.0,0.8687150837988827,0.8687150837988827,0.33054003724394787,0.9916201117318436,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9263966480446925,0.9452350119743832,0.9263966480446927
24
+ 1.0,112,0.7988826815642458,0.9385474860335196,0.9636871508379888,0.9888268156424581,0.7988826815642458,0.7988826815642458,0.3128491620111732,0.9385474860335196,0.19273743016759773,0.9636871508379888,0.09888268156424579,0.9888268156424581,0.8724971180278439,0.9013290962380638,0.8729215200848387
25
+ 2.0,224,0.8100558659217877,0.952513966480447,0.9748603351955307,0.994413407821229,0.8100558659217877,0.8100558659217877,0.3175046554934823,0.952513966480447,0.1949720670391061,0.9748603351955307,0.09944134078212288,0.994413407821229,0.8835882770240309,0.9112287400862301,0.8838180481539645
26
+ 3.0,336,0.8324022346368715,0.9664804469273743,0.9804469273743017,0.9972067039106145,0.8324022346368715,0.8324022346368715,0.3221601489757915,0.9664804469273743,0.1960893854748603,0.9804469273743017,0.09972067039106144,0.9972067039106145,0.9007637226212644,0.9249588498705006,0.9009499423605568
27
+ 4.0,448,0.8435754189944135,0.9720670391061452,0.9888268156424581,1.0,0.8435754189944135,0.8435754189944135,0.3240223463687151,0.9720670391061452,0.19776536312849158,0.9888268156424581,0.09999999999999999,1.0,0.9074598740799856,0.930681103518929,0.9074598740799856
28
+ 4.464285714285714,500,0.8519553072625698,0.9748603351955307,0.9888268156424581,1.0,0.8519553072625698,0.8519553072625698,0.3249534450651769,0.9748603351955307,0.19776536312849158,0.9888268156424581,0.09999999999999999,1.0,0.9115068280571073,0.9336742870997445,0.9115068280571075
29
+ 5.0,560,0.8519553072625698,0.9776536312849162,0.9888268156424581,0.9972067039106145,0.8519553072625698,0.8519553072625698,0.3258845437616387,0.9776536312849162,0.19776536312849158,0.9888268156424581,0.09972067039106144,0.9972067039106145,0.9128569211669768,0.9341576610559545,0.913110857175103
30
+ 6.0,672,0.8547486033519553,0.9804469273743017,0.994413407821229,1.0,0.8547486033519553,0.8547486033519553,0.3268156424581006,0.9804469273743017,0.19888268156424577,0.994413407821229,0.09999999999999999,1.0,0.9171399751707012,0.9381337361421023,0.9171399751707014
31
+ 7.0,784,0.8631284916201117,0.9832402234636871,0.9916201117318436,1.0,0.8631284916201117,0.8631284916201117,0.32774674115456237,0.9832402234636871,0.19832402234636867,0.9916201117318436,0.09999999999999999,1.0,0.922695530726257,0.9423425322608494,0.922695530726257
32
+ 8.0,896,0.8603351955307262,0.9916201117318436,0.9972067039106145,1.0,0.8603351955307262,0.8603351955307262,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9228385208832136,0.9426017872344871,0.9228385208832136
33
+ 8.928571428571429,1000,0.8687150837988827,0.9916201117318436,1.0,1.0,0.8687150837988827,0.8687150837988827,0.33054003724394787,0.9916201117318436,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9263966480446925,0.9452350119743832,0.9263966480446927
34
+ 9.0,1008,0.8659217877094972,0.9916201117318436,1.0,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9254655493482308,0.9445698150669609,0.9254655493482308
35
+ 10.0,1120,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9269087523277467,0.9457038021938512,0.9269087523277467
36
+ 11.0,1232,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9269087523277467,0.9457038021938512,0.9269087523277467
37
+ 12.0,1344,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9269087523277467,0.9457038021938512,0.9269087523277467
38
+ 13.0,1456,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9269087523277467,0.9457038021938512,0.9269087523277467
39
+ 13.392857142857142,1500,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9269087523277467,0.9457038021938512,0.9269087523277467
40
+ 14.0,1568,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9269087523277467,0.9457038021938512,0.9269087523277467
41
+ 15.0,1680,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9269087523277467,0.9457038021938512,0.9269087523277467
42
+ 16.0,1792,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9269087523277467,0.9457038021938512,0.9269087523277467
43
+ 17.0,1904,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9269087523277467,0.9457038021938512,0.9269087523277467
44
+ 17.857142857142858,2000,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9269087523277467,0.9457038021938512,0.9269087523277467
45
+ 18.0,2016,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9269087523277467,0.9457038021938512,0.9269087523277467
46
+ 19.0,2128,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9269087523277467,0.9457038021938512,0.9269087523277467
47
+ 20.0,2240,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9269087523277467,0.9457038021938512,0.9269087523277467
48
+ 1.0,168,0.7988826815642458,0.9385474860335196,0.9720670391061452,0.9888268156424581,0.7988826815642458,0.7988826815642458,0.3128491620111732,0.9385474860335196,0.19441340782122898,0.9720670391061452,0.09888268156424579,0.9888268156424581,0.8729549082202709,0.9017665529682148,0.8735013408896091
49
+ 2.0,336,0.8296089385474861,0.9664804469273743,0.9804469273743017,0.9972067039106145,0.8296089385474861,0.8296089385474861,0.3221601489757915,0.9664804469273743,0.1960893854748603,0.9804469273743017,0.09972067039106144,0.9972067039106145,0.8980214152700183,0.9228629306135914,0.8981544293695132
50
+ 2.9761904761904763,500,0.8379888268156425,0.9720670391061452,0.9888268156424581,0.9972067039106145,0.8379888268156425,0.8379888268156425,0.3240223463687151,0.9720670391061452,0.19776536312849158,0.9888268156424581,0.09972067039106144,0.9972067039106145,0.9057340161390439,0.9288590797339898,0.90598795214717
51
+ 3.0,504,0.8379888268156425,0.9720670391061452,0.9888268156424581,0.9972067039106145,0.8379888268156425,0.8379888268156425,0.3240223463687151,0.9720670391061452,0.19776536312849158,0.9888268156424581,0.09972067039106144,0.9972067039106145,0.9057340161390439,0.9288590797339898,0.90598795214717
52
+ 4.0,672,0.8547486033519553,0.9804469273743017,0.9916201117318436,0.9972067039106145,0.8547486033519553,0.8547486033519553,0.3268156424581006,0.9804469273743017,0.19832402234636867,0.9916201117318436,0.09972067039106144,0.9972067039106145,0.9150948833909727,0.9358834641805375,0.9153488193990987
53
+ 5.0,840,0.8743016759776536,0.9804469273743017,0.9916201117318436,1.0,0.8743016759776536,0.8743016759776536,0.3268156424581006,0.9804469273743017,0.19832402234636867,0.9916201117318436,0.09999999999999999,1.0,0.9272579143389199,0.9455968944915397,0.9272579143389199
54
+ 5.9523809523809526,1000,0.8743016759776536,0.9860335195530726,0.9972067039106145,1.0,0.8743016759776536,0.8743016759776536,0.32867783985102417,0.9860335195530726,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9300279329608938,0.9479211495430752,0.9300279329608938
55
+ 6.0,1008,0.8770949720670391,0.9860335195530726,0.9972067039106145,1.0,0.8770949720670391,0.8770949720670391,0.32867783985102417,0.9860335195530726,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9304934823091247,0.9482206208818615,0.9304934823091248
56
+ 7.0,1176,0.8770949720670391,0.9860335195530726,0.9972067039106145,1.0,0.8770949720670391,0.8770949720670391,0.32867783985102417,0.9860335195530726,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9310986964618249,0.9487087591623373,0.9310986964618249
57
+ 8.0,1344,0.8770949720670391,0.9860335195530726,0.9972067039106145,1.0,0.8770949720670391,0.8770949720670391,0.32867783985102417,0.9860335195530726,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9310986964618249,0.9487087591623373,0.9310986964618249
58
+ 8.928571428571429,1500,0.8770949720670391,0.9860335195530726,0.9972067039106145,1.0,0.8770949720670391,0.8770949720670391,0.32867783985102417,0.9860335195530726,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9310986964618249,0.9487087591623373,0.9310986964618249
59
+ 9.0,1512,0.8770949720670391,0.9860335195530726,0.9972067039106145,1.0,0.8770949720670391,0.8770949720670391,0.32867783985102417,0.9860335195530726,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9310986964618249,0.9487087591623373,0.9310986964618249
60
+ 10.0,1680,0.8770949720670391,0.9860335195530726,0.9972067039106145,1.0,0.8770949720670391,0.8770949720670391,0.32867783985102417,0.9860335195530726,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9310986964618249,0.9487087591623373,0.9310986964618249
61
+ 1.0,112,0.7988826815642458,0.9385474860335196,0.9636871508379888,0.9888268156424581,0.7988826815642458,0.7988826815642458,0.3128491620111732,0.9385474860335196,0.19273743016759773,0.9636871508379888,0.09888268156424579,0.9888268156424581,0.8724971180278439,0.9013290962380638,0.8729215200848387
62
+ 2.0,224,0.8100558659217877,0.952513966480447,0.9748603351955307,0.994413407821229,0.8100558659217877,0.8100558659217877,0.3175046554934823,0.952513966480447,0.1949720670391061,0.9748603351955307,0.09944134078212288,0.994413407821229,0.8835882770240309,0.9112287400862301,0.8838180481539645
63
+ 3.0,336,0.8324022346368715,0.9664804469273743,0.9804469273743017,0.9972067039106145,0.8324022346368715,0.8324022346368715,0.3221601489757915,0.9664804469273743,0.1960893854748603,0.9804469273743017,0.09972067039106144,0.9972067039106145,0.9007637226212644,0.9249588498705006,0.9009499423605568
64
+ 4.0,448,0.8435754189944135,0.9720670391061452,0.9888268156424581,1.0,0.8435754189944135,0.8435754189944135,0.3240223463687151,0.9720670391061452,0.19776536312849158,0.9888268156424581,0.09999999999999999,1.0,0.9074598740799856,0.930681103518929,0.9074598740799856
65
+ 4.464285714285714,500,0.8519553072625698,0.9748603351955307,0.9888268156424581,1.0,0.8519553072625698,0.8519553072625698,0.3249534450651769,0.9748603351955307,0.19776536312849158,0.9888268156424581,0.09999999999999999,1.0,0.9115068280571073,0.9336742870997445,0.9115068280571075
66
+ 5.0,560,0.8519553072625698,0.9776536312849162,0.9888268156424581,0.9972067039106145,0.8519553072625698,0.8519553072625698,0.3258845437616387,0.9776536312849162,0.19776536312849158,0.9888268156424581,0.09972067039106144,0.9972067039106145,0.9128569211669768,0.9341576610559545,0.913110857175103
67
+ 6.0,672,0.8547486033519553,0.9804469273743017,0.994413407821229,1.0,0.8547486033519553,0.8547486033519553,0.3268156424581006,0.9804469273743017,0.19888268156424577,0.994413407821229,0.09999999999999999,1.0,0.9171399751707012,0.9381337361421023,0.9171399751707014
68
+ 7.0,784,0.8631284916201117,0.9832402234636871,0.9916201117318436,1.0,0.8631284916201117,0.8631284916201117,0.32774674115456237,0.9832402234636871,0.19832402234636867,0.9916201117318436,0.09999999999999999,1.0,0.922695530726257,0.9423425322608494,0.922695530726257
69
+ 8.0,896,0.8603351955307262,0.9916201117318436,0.9972067039106145,1.0,0.8603351955307262,0.8603351955307262,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9228385208832136,0.9426017872344871,0.9228385208832136
70
+ 8.928571428571429,1000,0.8687150837988827,0.9916201117318436,1.0,1.0,0.8687150837988827,0.8687150837988827,0.33054003724394787,0.9916201117318436,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9263966480446925,0.9452350119743832,0.9263966480446927
71
+ 9.0,1008,0.8659217877094972,0.9916201117318436,1.0,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9249999999999998,0.9442040894983257,0.9249999999999999
72
+ 10.0,1120,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9273743016759775,0.9460695277624867,0.9273743016759777
73
+ 11.0,1232,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9273743016759775,0.9460695277624867,0.9273743016759777
74
+ 12.0,1344,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9273743016759775,0.9460695277624867,0.9273743016759777
75
+ 13.0,1456,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9273743016759775,0.9460695277624867,0.9273743016759777
76
+ 13.392857142857142,1500,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9273743016759775,0.9460695277624867,0.9273743016759777
77
+ 14.0,1568,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9273743016759775,0.9460695277624867,0.9273743016759777
78
+ 15.0,1680,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9273743016759775,0.9460695277624867,0.9273743016759777
79
+ 16.0,1792,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9273743016759775,0.9460695277624867,0.9273743016759777
80
+ 17.0,1904,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9273743016759775,0.9460695277624867,0.9273743016759777
81
+ 17.857142857142858,2000,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9273743016759775,0.9460695277624867,0.9273743016759777
82
+ 18.0,2016,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9273743016759775,0.9460695277624867,0.9273743016759777
83
+ 19.0,2128,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9273743016759775,0.9460695277624867,0.9273743016759777
84
+ 20.0,2240,0.8659217877094972,0.9916201117318436,0.9972067039106145,1.0,0.8659217877094972,0.8659217877094972,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9273743016759775,0.9460695277624867,0.9273743016759777
85
+ 1.0,112,0.7960893854748603,0.9357541899441341,0.9581005586592178,0.9860335195530726,0.7960893854748603,0.7960893854748603,0.31191806331471134,0.9357541899441341,0.1916201117318435,0.9581005586592178,0.09860335195530723,0.9860335195530726,0.8692848275250507,0.8981402366521546,0.8698705266795377
86
+ 2.0,224,0.8100558659217877,0.946927374301676,0.9692737430167597,0.994413407821229,0.8100558659217877,0.8100558659217877,0.31564245810055863,0.946927374301676,0.1938547486033519,0.9692737430167597,0.09944134078212288,0.994413407821229,0.8810277556087608,0.9091006409042667,0.8812252963992017
87
+ 3.0,336,0.8268156424581006,0.9608938547486033,0.9804469273743017,0.994413407821229,0.8268156424581006,0.8268156424581006,0.3202979515828678,0.9608938547486033,0.1960893854748603,0.9804469273743017,0.09944134078212288,0.994413407821229,0.8961237474505628,0.9208149933611262,0.8964845481954421
88
+ 4.0,448,0.8379888268156425,0.9664804469273743,0.9888268156424581,1.0,0.8379888268156425,0.8379888268156425,0.3221601489757915,0.9664804469273743,0.19776536312849158,0.9888268156424581,0.09999999999999999,1.0,0.9040924004611155,0.9281429863172445,0.9040924004611155
89
+ 4.464285714285714,500,0.8435754189944135,0.9720670391061452,0.9916201117318436,1.0,0.8435754189944135,0.8435754189944135,0.3240223463687151,0.9720670391061452,0.19832402234636867,0.9916201117318436,0.09999999999999999,1.0,0.9067925866808547,0.9301910896450982,0.9067925866808548
90
+ 5.0,560,0.8491620111731844,0.9776536312849162,0.9916201117318436,1.0,0.8491620111731844,0.8491620111731844,0.3258845437616387,0.9776536312849162,0.19832402234636867,0.9916201117318436,0.09999999999999999,1.0,0.9120222576926488,0.9341921091213241,0.9120222576926488
91
+ 1.0,112,0.8084507042253521,0.9436619718309859,0.9661971830985916,0.9915492957746479,0.8084507042253521,0.8084507042253521,0.3145539906103286,0.9436619718309859,0.1932394366197183,0.9661971830985916,0.09915492957746477,0.9915492957746479,0.8790990386765031,0.9069307226316503,0.8794252105115777
92
+ 2.0,224,0.819718309859155,0.9549295774647887,0.9774647887323944,0.9971830985915493,0.819718309859155,0.819718309859155,0.3183098591549296,0.9549295774647887,0.19549295774647882,0.9774647887323944,0.09971830985915492,0.9971830985915493,0.8888989492510616,0.9158505137757735,0.8889898170384314
93
+ 3.0,336,0.8338028169014085,0.9690140845070423,0.9830985915492958,0.9971830985915493,0.8338028169014085,0.8338028169014085,0.32300469483568073,0.9690140845070423,0.1966197183098591,0.9830985915492958,0.09971830985915492,0.9971830985915493,0.9012519561815333,0.9253837409644815,0.9013860943438409
94
+ 4.0,448,0.8450704225352113,0.9690140845070423,0.9887323943661972,1.0,0.8450704225352113,0.8450704225352113,0.32300469483568073,0.9690140845070423,0.1977464788732394,0.9887323943661972,0.1,1.0,0.9092644757433487,0.932038166981149,0.909264475743349
95
+ 4.464285714285714,500,0.8450704225352113,0.971830985915493,0.9887323943661972,1.0,0.8450704225352113,0.8450704225352113,0.323943661971831,0.971830985915493,0.1977464788732394,0.9887323943661972,0.1,1.0,0.909107981220657,0.931938733509475,0.9091079812206573
96
+ 5.0,560,0.8507042253521127,0.971830985915493,0.9915492957746479,1.0,0.8507042253521127,0.8507042253521127,0.323943661971831,0.971830985915493,0.19830985915492955,0.9915492957746479,0.1,1.0,0.9129968701095461,0.9348826222453855,0.9129968701095461
97
+ 6.0,672,0.8591549295774648,0.9802816901408451,0.9915492957746479,1.0,0.8591549295774648,0.8591549295774648,0.3267605633802817,0.9802816901408451,0.19830985915492955,0.9915492957746479,0.1,1.0,0.9190453834115805,0.9394890988768476,0.9190453834115806
98
+ 1.0,112,0.8022284122562674,0.9415041782729805,0.9637883008356546,0.9888579387186629,0.8022284122562674,0.8022284122562674,0.3138347260909935,0.9415041782729805,0.1927576601671309,0.9637883008356546,0.09888579387186627,0.9888579387186629,0.8749414157492148,0.9031898047218759,0.8753646356277778
99
+ 2.0,224,0.8105849582172702,0.9526462395543176,0.9749303621169917,0.9944289693593314,0.8105849582172702,0.8105849582172702,0.31754874651810583,0.9526462395543176,0.19498607242339824,0.9749303621169917,0.09944289693593314,0.9944289693593314,0.8839125436618469,0.9114760137907253,0.884141674760778
100
+ 3.0,336,0.8328690807799443,0.9665738161559888,0.9805013927576601,0.9972144846796658,0.8328690807799443,0.8328690807799443,0.32219127205199627,0.9665738161559888,0.19610027855153198,0.9805013927576601,0.09972144846796657,0.9972144846796658,0.9010401467922358,0.9251678781438418,0.9012258478135915
101
+ 4.0,448,0.8440111420612814,0.9721448467966574,0.9888579387186629,1.0,0.8440111420612814,0.8440111420612814,0.32404828226555243,0.9721448467966574,0.19777158774373255,0.9888579387186629,0.09999999999999998,1.0,0.9077176460184815,0.9308741923670656,0.9077176460184815
102
+ 4.464285714285714,500,0.8523676880222841,0.9749303621169917,0.9888579387186629,1.0,0.8523676880222841,0.8523676880222841,0.32497678737233054,0.9749303621169917,0.19777158774373255,0.9888579387186629,0.09999999999999998,1.0,0.9117533271432992,0.9338590383891603,0.9117533271432992
103
+ 5.0,560,0.8523676880222841,0.9777158774373259,0.9888579387186629,0.9972144846796658,0.8523676880222841,0.8523676880222841,0.32590529247910865,0.9777158774373259,0.19777158774373255,0.9888579387186629,0.09972144846796657,0.9972144846796658,0.9130996595481273,0.9343410658998098,0.9133528882136123
104
+ 6.0,672,0.8551532033426184,0.9805013927576601,0.9944289693593314,1.0,0.8551532033426184,0.8551532033426184,0.3268337975858867,0.9805013927576601,0.19888579387186628,0.9944289693593314,0.09999999999999998,1.0,0.9173707830393065,0.9383060655678902,0.9173707830393067
105
+ 7.0,784,0.8635097493036211,0.9832869080779945,0.9916434540389972,1.0,0.8635097493036211,0.8635097493036211,0.32776230269266476,0.9832869080779945,0.1983286908077994,0.9916434540389972,0.09999999999999998,1.0,0.9229108635097493,0.9425031380205685,0.9229108635097493
106
+ 8.0,896,0.8607242339832869,0.9916434540389972,0.9972144846796658,1.0,0.8607242339832869,0.8607242339832869,0.33054781801299904,0.9916434540389972,0.19944289693593314,0.9972144846796658,0.09999999999999998,1.0,0.923053455365433,0.9427616708355052,0.923053455365433
107
+ 8.928571428571429,1000,0.8690807799442897,0.9916434540389972,1.0,1.0,0.8690807799442897,0.8690807799442897,0.33054781801299904,0.9916434540389972,0.19999999999999996,1.0,0.09999999999999998,1.0,0.926601671309192,0.9453875606875465,0.9266016713091921
108
+ 9.0,1008,0.8690807799442897,0.9916434540389972,1.0,1.0,0.8690807799442897,0.8690807799442897,0.33054781801299904,0.9916434540389972,0.19999999999999996,1.0,0.09999999999999998,1.0,0.926601671309192,0.9453875606875465,0.9266016713091921
109
+ 10.0,1120,0.8690807799442897,0.9916434540389972,1.0,1.0,0.8690807799442897,0.8690807799442897,0.33054781801299904,0.9916434540389972,0.19999999999999996,1.0,0.09999999999999998,1.0,0.926601671309192,0.9453875606875465,0.9266016713091921
110
+ 1.0,112,0.7938718662952646,0.9415041782729805,0.9637883008356546,0.9888579387186629,0.7938718662952646,0.7938718662952646,0.3138347260909935,0.9415041782729805,0.1927576601671309,0.9637883008356546,0.09888579387186627,0.9888579387186629,0.8702988902153245,0.8997409454102963,0.870863918146559
111
+ 2.0,224,0.8050139275766016,0.9526462395543176,0.9749303621169917,0.9972144846796658,0.8050139275766016,0.8050139275766016,0.31754874651810583,0.9526462395543176,0.19498607242339824,0.9749303621169917,0.09972144846796657,0.9972144846796658,0.8811657160542952,0.9100876344642663,0.8812555713872094
112
+ 3.0,336,0.8217270194986073,0.9665738161559888,0.9832869080779945,0.9972144846796658,0.8217270194986073,0.8217270194986073,0.32219127205199627,0.9665738161559888,0.19665738161559884,0.9832869080779945,0.09972144846796657,0.9972144846796658,0.895322102842994,0.92097856274734,0.8954961975505151
113
+ 4.0,448,0.8384401114206128,0.9721448467966574,0.9888579387186629,0.9972144846796658,0.8384401114206128,0.8384401114206128,0.32404828226555243,0.9721448467966574,0.19777158774373255,0.9888579387186629,0.09972144846796657,0.9972144846796658,0.9046535791661138,0.9280128962133749,0.9049068078315988
114
+ 4.464285714285714,500,0.8440111420612814,0.9749303621169917,0.9888579387186629,0.9972144846796658,0.8440111420612814,0.8440111420612814,0.32497678737233054,0.9749303621169917,0.19777158774373255,0.9888579387186629,0.09972144846796657,0.9972144846796658,0.9072965026307643,0.9299696914097634,0.9075497312962493
115
+ 5.0,560,0.8467966573816156,0.9777158774373259,0.9888579387186629,0.9972144846796658,0.8467966573816156,0.8467966573816156,0.32590529247910865,0.9777158774373259,0.19777158774373255,0.9888579387186629,0.09972144846796657,0.9972144846796658,0.910314144227793,0.9322849642483972,0.910567372893278
116
+ 6.0,672,0.8523676880222841,0.9805013927576601,0.9944289693593314,1.0,0.8523676880222841,0.8523676880222841,0.3268337975858867,0.9805013927576601,0.19888579387186628,0.9944289693593314,0.09999999999999998,1.0,0.9155137728257505,0.9369133079077231,0.9155137728257505
117
+ 7.0,784,0.8607242339832869,0.9832869080779945,0.9944289693593314,1.0,0.8607242339832869,0.8607242339832869,0.32776230269266476,0.9832869080779945,0.19888579387186628,0.9944289693593314,0.09999999999999998,1.0,0.9211467038068708,0.941195744204765,0.9211467038068708
118
+ 8.0,896,0.8551532033426184,0.9916434540389972,0.9972144846796658,1.0,0.8551532033426184,0.8551532033426184,0.33054781801299904,0.9916434540389972,0.19944289693593314,0.9972144846796658,0.09999999999999998,1.0,0.9202679400450988,0.9407055691840925,0.9202679400450988
119
+ 8.928571428571429,1000,0.8579387186629527,0.9916434540389972,1.0,1.0,0.8579387186629527,0.8579387186629527,0.33054781801299904,0.9916434540389972,0.19999999999999996,1.0,0.09999999999999998,1.0,0.9210306406685232,0.9412753573847213,0.9210306406685236
120
+ 9.0,1008,0.8579387186629527,0.9916434540389972,1.0,1.0,0.8579387186629527,0.8579387186629527,0.33054781801299904,0.9916434540389972,0.19999999999999996,1.0,0.09999999999999998,1.0,0.9210306406685232,0.9412753573847213,0.9210306406685236
121
+ 10.0,1120,0.8579387186629527,0.9916434540389972,1.0,1.0,0.8579387186629527,0.8579387186629527,0.33054781801299904,0.9916434540389972,0.19999999999999996,1.0,0.09999999999999998,1.0,0.9210306406685232,0.9412753573847213,0.9210306406685236
122
+ 1.0,112,0.7938718662952646,0.9415041782729805,0.9637883008356546,0.9888579387186629,0.7938718662952646,0.7938718662952646,0.3138347260909935,0.9415041782729805,0.1927576601671309,0.9637883008356546,0.09888579387186627,0.9888579387186629,0.8702988902153245,0.8997409454102963,0.870863918146559
123
+ 2.0,224,0.8050139275766016,0.9526462395543176,0.9749303621169917,0.9972144846796658,0.8050139275766016,0.8050139275766016,0.31754874651810583,0.9526462395543176,0.19498607242339824,0.9749303621169917,0.09972144846796657,0.9972144846796658,0.8811657160542952,0.9100876344642663,0.8812555713872094
124
+ 3.0,336,0.8217270194986073,0.9665738161559888,0.9832869080779945,0.9972144846796658,0.8217270194986073,0.8217270194986073,0.32219127205199627,0.9665738161559888,0.19665738161559884,0.9832869080779945,0.09972144846796657,0.9972144846796658,0.895322102842994,0.92097856274734,0.8954961975505151
125
+ 4.0,448,0.8384401114206128,0.9721448467966574,0.9888579387186629,0.9972144846796658,0.8384401114206128,0.8384401114206128,0.32404828226555243,0.9721448467966574,0.19777158774373255,0.9888579387186629,0.09972144846796657,0.9972144846796658,0.9046535791661138,0.9280128962133749,0.9049068078315988
126
+ 4.464285714285714,500,0.8440111420612814,0.9749303621169917,0.9888579387186629,0.9972144846796658,0.8440111420612814,0.8440111420612814,0.32497678737233054,0.9749303621169917,0.19777158774373255,0.9888579387186629,0.09972144846796657,0.9972144846796658,0.9072965026307643,0.9299696914097634,0.9075497312962493
127
+ 5.0,560,0.8467966573816156,0.9777158774373259,0.9888579387186629,0.9972144846796658,0.8467966573816156,0.8467966573816156,0.32590529247910865,0.9777158774373259,0.19777158774373255,0.9888579387186629,0.09972144846796657,0.9972144846796658,0.910314144227793,0.9322849642483972,0.910567372893278
128
+ 6.0,672,0.8523676880222841,0.9805013927576601,0.9944289693593314,1.0,0.8523676880222841,0.8523676880222841,0.3268337975858867,0.9805013927576601,0.19888579387186628,0.9944289693593314,0.09999999999999998,1.0,0.9155137728257505,0.9369133079077231,0.9155137728257505
129
+ 7.0,784,0.8607242339832869,0.9832869080779945,0.9944289693593314,1.0,0.8607242339832869,0.8607242339832869,0.32776230269266476,0.9832869080779945,0.19888579387186628,0.9944289693593314,0.09999999999999998,1.0,0.9205431754874651,0.9407089656409479,0.9205431754874651
130
+ 8.0,896,0.8551532033426184,0.9916434540389972,0.9972144846796658,1.0,0.8551532033426184,0.8551532033426184,0.33054781801299904,0.9916434540389972,0.19944289693593314,0.9972144846796658,0.09999999999999998,1.0,0.9198036874917095,0.9403408623496318,0.9198036874917098
131
+ 8.928571428571429,1000,0.8607242339832869,0.9916434540389972,1.0,1.0,0.8607242339832869,0.8607242339832869,0.33054781801299904,0.9916434540389972,0.19999999999999996,1.0,0.09999999999999998,1.0,0.9224233983286905,0.9423034082104276,0.9224233983286907
132
+ 9.0,1008,0.8607242339832869,0.9916434540389972,1.0,1.0,0.8607242339832869,0.8607242339832869,0.33054781801299904,0.9916434540389972,0.19999999999999996,1.0,0.09999999999999998,1.0,0.9224233983286905,0.9423034082104276,0.9224233983286907
133
+ 10.0,1120,0.8607242339832869,0.9916434540389972,1.0,1.0,0.8607242339832869,0.8607242339832869,0.33054781801299904,0.9916434540389972,0.19999999999999996,1.0,0.09999999999999998,1.0,0.9224233983286905,0.9423034082104276,0.9224233983286907
134
+ 1.0,112,0.7938718662952646,0.9415041782729805,0.9637883008356546,0.9888579387186629,0.7938718662952646,0.7938718662952646,0.3138347260909935,0.9415041782729805,0.1927576601671309,0.9637883008356546,0.09888579387186627,0.9888579387186629,0.8702988902153245,0.8997409454102963,0.870863918146559
135
+ 2.0,224,0.8050139275766016,0.9526462395543176,0.9749303621169917,0.9972144846796658,0.8050139275766016,0.8050139275766016,0.31754874651810583,0.9526462395543176,0.19498607242339824,0.9749303621169917,0.09972144846796657,0.9972144846796658,0.8811657160542952,0.9100876344642663,0.8812555713872094
136
+ 3.0,336,0.8217270194986073,0.9665738161559888,0.9832869080779945,0.9972144846796658,0.8217270194986073,0.8217270194986073,0.32219127205199627,0.9665738161559888,0.19665738161559884,0.9832869080779945,0.09972144846796657,0.9972144846796658,0.895322102842994,0.92097856274734,0.8954961975505151
137
+ 4.0,448,0.8384401114206128,0.9721448467966574,0.9888579387186629,0.9972144846796658,0.8384401114206128,0.8384401114206128,0.32404828226555243,0.9721448467966574,0.19777158774373255,0.9888579387186629,0.09972144846796657,0.9972144846796658,0.9046535791661138,0.9280128962133749,0.9049068078315988
138
+ 4.464285714285714,500,0.8440111420612814,0.9749303621169917,0.9888579387186629,0.9972144846796658,0.8440111420612814,0.8440111420612814,0.32497678737233054,0.9749303621169917,0.19777158774373255,0.9888579387186629,0.09972144846796657,0.9972144846796658,0.9072965026307643,0.9299696914097634,0.9075497312962493
139
+ 5.0,560,0.8467966573816156,0.9777158774373259,0.9888579387186629,0.9972144846796658,0.8467966573816156,0.8467966573816156,0.32590529247910865,0.9777158774373259,0.19777158774373255,0.9888579387186629,0.09972144846796657,0.9972144846796658,0.910314144227793,0.9322849642483972,0.910567372893278
140
+ 6.0,672,0.8523676880222841,0.9805013927576601,0.9944289693593314,1.0,0.8523676880222841,0.8523676880222841,0.3268337975858867,0.9805013927576601,0.19888579387186628,0.9944289693593314,0.09999999999999998,1.0,0.9155137728257505,0.9369133079077231,0.9155137728257505
141
+ 7.0,784,0.8607242339832869,0.9832869080779945,0.9944289693593314,1.0,0.8607242339832869,0.8607242339832869,0.32776230269266476,0.9832869080779945,0.19888579387186628,0.9944289693593314,0.09999999999999998,1.0,0.9205431754874651,0.9407089656409479,0.9205431754874651
142
+ 8.0,896,0.8551532033426184,0.9916434540389972,0.9972144846796658,1.0,0.8551532033426184,0.8551532033426184,0.33054781801299904,0.9916434540389972,0.19944289693593314,0.9972144846796658,0.09999999999999998,1.0,0.9198036874917095,0.9403408623496318,0.9198036874917098
143
+ 8.928571428571429,1000,0.8635097493036211,0.9916434540389972,1.0,1.0,0.8635097493036211,0.8635097493036211,0.33054781801299904,0.9916434540389972,0.19999999999999996,1.0,0.09999999999999998,1.0,0.9238161559888576,0.9433314590361338,0.9238161559888579
144
+ 9.0,1008,0.8635097493036211,0.9916434540389972,1.0,1.0,0.8635097493036211,0.8635097493036211,0.33054781801299904,0.9916434540389972,0.19999999999999996,1.0,0.09999999999999998,1.0,0.9238161559888576,0.9433314590361338,0.9238161559888579
145
+ 10.0,1120,0.8635097493036211,0.9916434540389972,1.0,1.0,0.8635097493036211,0.8635097493036211,0.33054781801299904,0.9916434540389972,0.19999999999999996,1.0,0.09999999999999998,1.0,0.9238161559888576,0.9433314590361338,0.9238161559888579
146
+ 1.0,112,0.8016759776536313,0.9413407821229051,0.9636871508379888,0.9916201117318436,0.8016759776536313,0.8016759776536313,0.31378026070763504,0.9413407821229051,0.19273743016759773,0.9636871508379888,0.09916201117318434,0.9916201117318436,0.8750188436640947,0.9038740564277646,0.875346861658225
147
+ 2.0,224,0.8128491620111732,0.952513966480447,0.9776536312849162,0.9972067039106145,0.8128491620111732,0.8128491620111732,0.3175046554934823,0.952513966480447,0.19553072625698317,0.9776536312849162,0.09972067039106144,0.9972067039106145,0.8857220448700893,0.913502990604732,0.8858121511955536
148
+ 3.0,336,0.8324022346368715,0.9692737430167597,0.9832402234636871,0.9972067039106145,0.8324022346368715,0.8324022346368715,0.3230912476722532,0.9692737430167597,0.19664804469273736,0.9832402234636871,0.09972067039106144,0.9972067039106145,0.9018112086547839,0.9258400366771644,0.9019857896603707
149
+ 4.0,448,0.8463687150837989,0.9748603351955307,0.9888268156424581,1.0,0.8463687150837989,0.8463687150837989,0.32495344506517687,0.9748603351955307,0.19776536312849158,0.9888268156424581,0.09999999999999999,1.0,0.9095858827702402,0.9323048147236014,0.9095858827702403
150
+ 4.464285714285714,500,0.8519553072625698,0.9748603351955307,0.9888268156424581,1.0,0.8519553072625698,0.8519553072625698,0.3249534450651769,0.9748603351955307,0.19776536312849158,0.9888268156424581,0.09999999999999999,1.0,0.9120034140285534,0.9340734349291232,0.9120034140285538
151
+ 5.0,560,0.8547486033519553,0.9804469273743017,0.9888268156424581,1.0,0.8547486033519553,0.8547486033519553,0.3268156424581006,0.9804469273743017,0.19776536312849158,0.9888268156424581,0.09999999999999999,1.0,0.9152811031302649,0.936605305538614,0.9152811031302652
152
+ 6.0,672,0.8631284916201117,0.9804469273743017,0.994413407821229,1.0,0.8631284916201117,0.8631284916201117,0.3268156424581006,0.9804469273743017,0.19888268156424577,0.994413407821229,0.09999999999999999,1.0,0.9213687150837988,0.9412668244672625,0.9213687150837988
153
+ 7.0,784,0.8687150837988827,0.9832402234636871,0.994413407821229,1.0,0.8687150837988827,0.8687150837988827,0.32774674115456237,0.9832402234636871,0.19888268156424577,0.994413407821229,0.09999999999999999,1.0,0.9249767225325882,0.9440018412233446,0.9249767225325884
154
+ 8.0,896,0.8631284916201117,0.9916201117318436,0.9972067039106145,1.0,0.8631284916201117,0.8631284916201117,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9247007182761371,0.9439984352791796,0.9247007182761373
155
+ 8.928571428571429,1000,0.8631284916201117,0.9916201117318436,1.0,1.0,0.8631284916201117,0.8631284916201117,0.33054003724394787,0.9916201117318436,0.19999999999999998,1.0,0.09999999999999999,1.0,0.924068901303538,0.9435388925909036,0.924068901303538
156
+ 9.0,1008,0.8631284916201117,0.9916201117318436,1.0,1.0,0.8631284916201117,0.8631284916201117,0.33054003724394787,0.9916201117318436,0.19999999999999998,1.0,0.09999999999999999,1.0,0.924068901303538,0.9435388925909036,0.924068901303538
157
+ 10.0,1120,0.8631284916201117,0.9916201117318436,1.0,1.0,0.8631284916201117,0.8631284916201117,0.33054003724394787,0.9916201117318436,0.19999999999999998,1.0,0.09999999999999999,1.0,0.924068901303538,0.9435388925909036,0.924068901303538
158
+ 1.0,112,0.8016759776536313,0.9357541899441341,0.9664804469273743,0.9916201117318436,0.8016759776536313,0.8016759776536313,0.31191806331471134,0.9357541899441341,0.19329608938547482,0.9664804469273743,0.09916201117318434,0.9916201117318436,0.8734514941917173,0.9025978090986965,0.8737760728641106
159
+ 2.0,224,0.8156424581005587,0.9497206703910615,0.9748603351955307,0.9972067039106145,0.8156424581005587,0.8156424581005587,0.3165735567970205,0.9497206703910615,0.1949720670391061,0.9748603351955307,0.09972067039106144,0.9972067039106145,0.8857032012059942,0.9133592428089089,0.8857933075314587
160
+ 3.0,336,0.835195530726257,0.9636871508379888,0.9804469273743017,0.9972067039106145,0.835195530726257,0.835195530726257,0.32122905027932963,0.9636871508379888,0.1960893854748603,0.9804469273743017,0.09972067039106144,0.9972067039106145,0.9014232508645914,0.925390084981698,0.9016094706038839
161
+ 4.0,448,0.8463687150837989,0.9720670391061452,0.9888268156424581,1.0,0.8463687150837989,0.8463687150837989,0.3240223463687151,0.9720670391061452,0.19776536312849158,0.9888268156424581,0.09999999999999999,1.0,0.9082823445951935,0.9312573099752538,0.9082823445951937
162
+ 4.464285714285714,500,0.8491620111731844,0.9748603351955307,0.9888268156424581,1.0,0.8491620111731844,0.8491620111731844,0.32495344506517687,0.9748603351955307,0.19776536312849158,0.9888268156424581,0.09999999999999999,1.0,0.9106067659838607,0.9330425124530659,0.9106067659838609
163
+ 5.0,560,0.8519553072625698,0.9776536312849162,0.9888268156424581,1.0,0.8519553072625698,0.8519553072625698,0.3258845437616387,0.9776536312849162,0.19776536312849158,0.9888268156424581,0.09999999999999999,1.0,0.9136018001241462,0.9353308302735224,0.9136018001241465
164
+ 6.0,672,0.8547486033519553,0.9804469273743017,0.994413407821229,1.0,0.8547486033519553,0.8547486033519553,0.3268156424581006,0.9804469273743017,0.19888268156424577,0.994413407821229,0.09999999999999999,1.0,0.9171787709497204,0.9381740570390902,0.9171787709497208
165
+ 7.0,784,0.8659217877094972,0.9832402234636871,0.994413407821229,1.0,0.8659217877094972,0.8659217877094972,0.32774674115456237,0.9832402234636871,0.19888268156424577,0.994413407821229,0.09999999999999999,1.0,0.9237197392923648,0.9430933314591277,0.923719739292365
166
+ 8.0,896,0.8603351955307262,0.9916201117318436,0.9972067039106145,1.0,0.8603351955307262,0.8603351955307262,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9228385208832136,0.9426017872344871,0.9228385208832136
167
+ 8.928571428571429,1000,0.8631284916201117,0.9916201117318436,0.9972067039106145,1.0,0.8631284916201117,0.8631284916201117,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9239757914338919,0.9434532903000473,0.9239757914338919
168
+ 9.0,1008,0.8631284916201117,0.9916201117318436,0.9972067039106145,1.0,0.8631284916201117,0.8631284916201117,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9239757914338919,0.9434532903000473,0.9239757914338919
169
+ 10.0,1120,0.8631284916201117,0.9916201117318436,0.9972067039106145,1.0,0.8631284916201117,0.8631284916201117,0.33054003724394787,0.9916201117318436,0.1994413407821229,0.9972067039106145,0.09999999999999999,1.0,0.9239757914338919,0.9434532903000473,0.9239757914338919
170
+ 1.0,114,0.8138888888888889,0.9444444444444444,0.9666666666666667,0.9916666666666667,0.8138888888888889,0.8138888888888889,0.3148148148148148,0.9444444444444444,0.19333333333333333,0.9666666666666667,0.09916666666666665,0.9916666666666667,0.8821175044091708,0.9091989120114354,0.8824264590916482
171
+ 2.0,228,0.825,0.9583333333333334,0.9777777777777777,0.9972222222222222,0.825,0.825,0.3194444444444444,0.9583333333333334,0.19555555555555548,0.9777777777777777,0.09972222222222221,0.9972222222222222,0.8923754409171074,0.9184694402946153,0.8924650466518746
172
+ 3.0,342,0.85,0.9694444444444444,0.9805555555555555,0.9972222222222222,0.85,0.85,0.3231481481481482,0.9694444444444444,0.1961111111111111,0.9805555555555555,0.09972222222222221,0.9972222222222222,0.9099845679012343,0.9318231164139819,0.9101581790123456
173
+ 4.0,456,0.8555555555555555,0.9694444444444444,0.9888888888888889,1.0,0.8555555555555555,0.8555555555555555,0.3231481481481482,0.9694444444444444,0.19777777777777775,0.9888888888888889,0.1,1.0,0.9140200617283949,0.9355651849211439,0.914020061728395
174
+ 4.385964912280702,500,0.8472222222222222,0.975,0.9888888888888889,1.0,0.8472222222222222,0.8472222222222222,0.325,0.975,0.19777777777777775,0.9888888888888889,0.1,1.0,0.9122563932980599,0.9344192363003739,0.9122563932980601
175
+ 5.0,570,0.8611111111111112,0.9777777777777777,0.9916666666666667,0.9972222222222222,0.8611111111111112,0.8611111111111112,0.32592592592592595,0.9777777777777777,0.1983333333333333,0.9916666666666667,0.09972222222222221,0.9972222222222222,0.9195679012345679,0.9392521120612555,0.9198204264870931
176
+ 6.0,684,0.8666666666666667,0.9805555555555555,0.9944444444444445,0.9972222222222222,0.8666666666666667,0.8666666666666667,0.32685185185185184,0.9805555555555555,0.19888888888888887,0.9944444444444445,0.09972222222222221,0.9972222222222222,0.923773148148148,0.9424694112112936,0.9240256734006733
177
+ 7.0,798,0.8694444444444445,0.9833333333333333,0.9916666666666667,1.0,0.8694444444444445,0.8694444444444445,0.3277777777777778,0.9833333333333333,0.1983333333333333,0.9916666666666667,0.1,1.0,0.9262499999999998,0.9449637624596954,0.92625
178
+ 8.0,912,0.8694444444444445,0.9861111111111112,0.9972222222222222,1.0,0.8694444444444445,0.8694444444444445,0.3287037037037037,0.9861111111111112,0.19944444444444442,0.9972222222222222,0.1,1.0,0.9261111111111109,0.9449472723111405,0.926111111111111
179
+ 8.771929824561404,1000,0.8833333333333333,0.9805555555555555,1.0,1.0,0.8833333333333333,0.8833333333333333,0.32685185185185184,0.9805555555555555,0.2,1.0,0.1,1.0,0.93375,0.9506223646066897,0.93375
180
+ 9.0,1026,0.8833333333333333,0.9805555555555555,1.0,1.0,0.8833333333333333,0.8833333333333333,0.32685185185185184,0.9805555555555555,0.2,1.0,0.1,1.0,0.93375,0.9506223646066897,0.93375
181
+ 10.0,1140,0.8833333333333333,0.9805555555555555,1.0,1.0,0.8833333333333333,0.8833333333333333,0.32685185185185184,0.9805555555555555,0.2,1.0,0.1,1.0,0.93375,0.9506223646066897,0.93375
182
+ 1.0,114,0.8055555555555556,0.9444444444444444,0.9666666666666667,0.9916666666666667,0.8055555555555556,0.8055555555555556,0.3148148148148148,0.9444444444444444,0.19333333333333333,0.9666666666666667,0.09916666666666665,0.9916666666666667,0.8779508377425042,0.906123326624531,0.8782597924249815
183
+ 2.0,228,0.8166666666666667,0.9583333333333334,0.9777777777777777,0.9972222222222222,0.8166666666666667,0.8166666666666667,0.3194444444444444,0.9583333333333334,0.19555555555555548,0.9777777777777777,0.09972222222222221,0.9972222222222222,0.8872332451499114,0.9146168327863481,0.8873228508846789
184
+ 3.0,342,0.8388888888888889,0.9694444444444444,0.9861111111111112,0.9972222222222222,0.8388888888888889,0.8388888888888889,0.3231481481481482,0.9694444444444444,0.19722222222222222,0.9861111111111112,0.09972222222222221,0.9972222222222222,0.9036882716049379,0.9271652018234151,0.9038734567901233
185
+ 4.0,456,0.85,0.9722222222222222,0.9916666666666667,1.0,0.85,0.85,0.32407407407407407,0.9722222222222222,0.1983333333333333,0.9916666666666667,0.1,1.0,0.911103395061728,0.9334287927423233,0.9111033950617283
186
+ 4.385964912280702,500,0.8416666666666667,0.975,0.9888888888888889,1.0,0.8416666666666667,0.8416666666666667,0.325,0.975,0.19777777777777775,0.9888888888888889,0.1,1.0,0.9090156525573192,0.9320051522825168,0.9090156525573191
187
+ 5.0,570,0.85,0.9777777777777777,0.9916666666666667,1.0,0.85,0.85,0.32592592592592595,0.9777777777777777,0.1983333333333333,0.9916666666666667,0.1,1.0,0.9143209876543209,0.9359875259777828,0.914320987654321
188
+ 6.0,684,0.8583333333333333,0.9777777777777777,0.9944444444444445,1.0,0.8583333333333333,0.8583333333333333,0.32592592592592595,0.9777777777777777,0.19888888888888887,0.9944444444444445,0.1,1.0,0.919722222222222,0.9400775520323312,0.9197222222222221
189
+ 7.0,798,0.8611111111111112,0.9833333333333333,0.9916666666666667,1.0,0.8611111111111112,0.8611111111111112,0.3277777777777778,0.9833333333333333,0.1983333333333333,0.9916666666666667,0.1,1.0,0.9220833333333331,0.941888177072791,0.9220833333333333
190
+ 8.0,912,0.8666666666666667,0.9805555555555555,0.9972222222222222,1.0,0.8666666666666667,0.8666666666666667,0.32685185185185184,0.9805555555555555,0.19944444444444442,0.9972222222222222,0.1,1.0,0.9247222222222221,0.9439006407091675,0.9247222222222221
191
+ 8.771929824561404,1000,0.875,0.9805555555555555,1.0,1.0,0.875,0.875,0.32685185185185184,0.9805555555555555,0.2,1.0,0.1,1.0,0.9291203703703704,0.9471830854598645,0.9291203703703702
192
+ 9.0,1026,0.875,0.9805555555555555,1.0,1.0,0.875,0.875,0.32685185185185184,0.9805555555555555,0.2,1.0,0.1,1.0,0.9291203703703704,0.9471830854598645,0.9291203703703702
193
+ 10.0,1140,0.875,0.9805555555555555,1.0,1.0,0.875,0.875,0.32685185185185184,0.9805555555555555,0.2,1.0,0.1,1.0,0.9291203703703704,0.9471830854598645,0.9291203703703702
194
+ 1.0,114,0.8055555555555556,0.9444444444444444,0.9666666666666667,0.9916666666666667,0.8055555555555556,0.8055555555555556,0.3148148148148148,0.9444444444444444,0.19333333333333333,0.9666666666666667,0.09916666666666665,0.9916666666666667,0.8773996913580243,0.9056699013710842,0.8777086460405018
195
+ 2.0,228,0.8194444444444444,0.9555555555555556,0.9777777777777777,0.9972222222222222,0.8194444444444444,0.8194444444444444,0.31851851851851853,0.9555555555555556,0.19555555555555548,0.9777777777777777,0.09972222222222221,0.9972222222222222,0.8879772927689593,0.9151354036404538,0.8880668985037263
196
+ 3.0,342,0.8388888888888889,0.9694444444444444,0.9805555555555555,0.9972222222222222,0.8388888888888889,0.8388888888888889,0.3231481481481482,0.9694444444444444,0.1961111111111111,0.9805555555555555,0.09972222222222221,0.9972222222222222,0.9035030864197527,0.9269949483782679,0.9036766975308641
197
+ 4.0,456,0.8527777777777777,0.9722222222222222,0.9916666666666667,1.0,0.8527777777777777,0.8527777777777777,0.32407407407407407,0.9722222222222222,0.1983333333333333,0.9916666666666667,0.1,1.0,0.912353395061728,0.9343322552300725,0.9123533950617283
198
+ 4.385964912280702,500,0.8416666666666667,0.975,0.9888888888888889,1.0,0.8416666666666667,0.8416666666666667,0.325,0.975,0.19777777777777775,0.9888888888888889,0.1,1.0,0.9088767636684302,0.9318834196412977,0.9088767636684303
199
+ 5.0,570,0.8472222222222222,0.9777777777777777,0.9916666666666667,1.0,0.8472222222222222,0.8472222222222222,0.32592592592592595,0.9777777777777777,0.1983333333333333,0.9916666666666667,0.1,1.0,0.9129320987654321,0.9349623308488146,0.9129320987654321
200
+ 6.0,684,0.8555555555555555,0.9805555555555555,0.9944444444444445,1.0,0.8555555555555555,0.8555555555555555,0.32685185185185184,0.9805555555555555,0.19888888888888887,0.9944444444444445,0.1,1.0,0.9176003086419752,0.9384774376079794,0.9176003086419753
201
+ 7.0,798,0.8611111111111112,0.9861111111111112,0.9916666666666667,1.0,0.8611111111111112,0.8611111111111112,0.3287037037037037,0.9861111111111112,0.1983333333333333,0.9916666666666667,0.1,1.0,0.9213888888888887,0.9413533546694124,0.921388888888889
202
+ 8.0,912,0.8666666666666667,0.9833333333333333,0.9972222222222222,1.0,0.8666666666666667,0.8666666666666667,0.3277777777777778,0.9833333333333333,0.19944444444444442,0.9972222222222222,0.1,1.0,0.9244907407407406,0.9437295120657094,0.9244907407407408
203
+ 8.771929824561404,1000,0.875,0.9777777777777777,1.0,1.0,0.875,0.875,0.32592592592592595,0.9777777777777777,0.2,1.0,0.1,1.0,0.9284259259259258,0.9466268265834812,0.9284259259259258
204
+ 9.0,1026,0.875,0.9777777777777777,1.0,1.0,0.875,0.875,0.32592592592592595,0.9777777777777777,0.2,1.0,0.1,1.0,0.9284259259259258,0.9466268265834812,0.9284259259259258
205
+ 10.0,1140,0.875,0.9777777777777777,1.0,1.0,0.875,0.875,0.32592592592592595,0.9777777777777777,0.2,1.0,0.1,1.0,0.9284259259259258,0.9466268265834812,0.9284259259259258
206
+ 1.0,114,0.8055555555555556,0.9388888888888889,0.9611111111111111,0.9888888888888889,0.8055555555555556,0.8055555555555556,0.312962962962963,0.9388888888888889,0.19222222222222218,0.9611111111111111,0.09888888888888887,0.9888888888888889,0.8749305555555553,0.903000930505865,0.8753657728642952
207
+ 2.0,228,0.8194444444444444,0.9472222222222222,0.9722222222222222,0.9916666666666667,0.8194444444444444,0.8194444444444444,0.31574074074074077,0.9472222222222222,0.19444444444444445,0.9722222222222222,0.09916666666666665,0.9916666666666667,0.8858939594356258,0.9121650607462133,0.8863612454822839
208
+ 3.0,342,0.8388888888888889,0.9638888888888889,0.9777777777777777,0.9944444444444445,0.8388888888888889,0.8388888888888889,0.3212962962962963,0.9638888888888889,0.19555555555555557,0.9777777777777777,0.09944444444444443,0.9944444444444445,0.9020216049382712,0.9251052551739467,0.9024266975308642
209
+ 4.0,456,0.8527777777777777,0.9666666666666667,0.9888888888888889,1.0,0.8527777777777777,0.8527777777777777,0.32222222222222224,0.9666666666666667,0.19777777777777775,0.9888888888888889,0.1,1.0,0.910941358024691,0.9331416661479858,0.9109413580246913
210
+ 4.385964912280702,500,0.8416666666666667,0.9694444444444444,0.9833333333333333,1.0,0.8416666666666667,0.8416666666666667,0.3231481481481482,0.9694444444444444,0.19666666666666666,0.9833333333333333,0.1,1.0,0.9074217372134037,0.9306573384381586,0.9074217372134039
211
+ 5.0,570,0.8472222222222222,0.9722222222222222,0.9888888888888889,1.0,0.8472222222222222,0.8472222222222222,0.32407407407407407,0.9722222222222222,0.19777777777777775,0.9888888888888889,0.1,1.0,0.9118827160493825,0.9340951435518777,0.9118827160493826
212
+ 6.0,684,0.8527777777777777,0.9777777777777777,0.9944444444444445,1.0,0.8527777777777777,0.8527777777777777,0.32592592592592595,0.9777777777777777,0.19888888888888887,0.9944444444444445,0.1,1.0,0.9155169753086418,0.9368959836026278,0.915516975308642
213
+ 7.0,798,0.8611111111111112,0.9861111111111112,0.9916666666666667,1.0,0.8611111111111112,0.8611111111111112,0.3287037037037037,0.9861111111111112,0.1983333333333333,0.9916666666666667,0.1,1.0,0.9204629629629627,0.9406259671495708,0.920462962962963
214
+ 8.0,912,0.8666666666666667,0.9805555555555555,0.9972222222222222,1.0,0.8666666666666667,0.8666666666666667,0.32685185185185184,0.9805555555555555,0.19944444444444442,0.9972222222222222,0.1,1.0,0.9242592592592591,0.9435369469492466,0.9242592592592593
215
+ 8.771929824561404,1000,0.8694444444444445,0.9805555555555555,1.0,1.0,0.8694444444444445,0.8694444444444445,0.32685185185185184,0.9805555555555555,0.2,1.0,0.1,1.0,0.9263425925925923,0.9451326952019282,0.9263425925925927
216
+ 9.0,1026,0.8694444444444445,0.9805555555555555,1.0,1.0,0.8694444444444445,0.8694444444444445,0.32685185185185184,0.9805555555555555,0.2,1.0,0.1,1.0,0.9263425925925923,0.9451326952019282,0.9263425925925927
217
+ 10.0,1140,0.8694444444444445,0.9805555555555555,1.0,1.0,0.8694444444444445,0.8694444444444445,0.32685185185185184,0.9805555555555555,0.2,1.0,0.1,1.0,0.9263425925925923,0.9451326952019282,0.9263425925925927
218
+ 1.0,82,0.7862595419847328,0.9389312977099237,0.9732824427480916,0.9885496183206107,0.7862595419847328,0.7862595419847328,0.3129770992366412,0.9389312977099237,0.1946564885496183,0.9732824427480916,0.09885496183206106,0.9885496183206107,0.8670589482612385,0.8974517151813928,0.8675156289850947
219
+ 2.0,164,0.8015267175572519,0.9465648854961832,0.9770992366412213,0.9923664122137404,0.8015267175572519,0.8015267175572519,0.3155216284987277,0.9465648854961832,0.19541984732824424,0.9770992366412213,0.09923664122137404,0.9923664122137404,0.8766372834120928,0.9055045265424565,0.8769622426444798
220
+ 3.0,246,0.816793893129771,0.9541984732824428,0.9809160305343512,0.9961832061068703,0.816793893129771,0.816793893129771,0.31806615776081415,0.9541984732824428,0.19618320610687023,0.9809160305343512,0.09961832061068703,0.9961832061068703,0.8893447837150128,0.916108741201681,0.889497455470738
221
+ 4.0,328,0.8282442748091603,0.9580152671755725,0.9847328244274809,0.9961832061068703,0.8282442748091603,0.8282442748091603,0.31933842239185745,0.9580152671755725,0.19694656488549617,0.9847328244274809,0.09961832061068703,0.9961832061068703,0.8974282079243914,0.9222857603526193,0.8976190476190476
222
+ 5.0,410,0.8549618320610687,0.9580152671755725,0.9847328244274809,0.9961832061068703,0.8549618320610687,0.8549618320610687,0.31933842239185745,0.9580152671755725,0.19694656488549617,0.9847328244274809,0.09961832061068703,0.9961832061068703,0.9120910577971649,0.9331576407826165,0.9124091239549255
223
+ 6.0,492,0.8473282442748091,0.9656488549618321,0.9885496183206107,1.0,0.8473282442748091,0.8473282442748091,0.3218829516539439,0.9656488549618321,0.19770992366412213,0.9885496183206107,0.09999999999999999,1.0,0.9103780443475101,0.9329139667686841,0.91037804434751
224
+ 6.097560975609756,500,0.851145038167939,0.9694656488549618,0.9885496183206107,1.0,0.851145038167939,0.851145038167939,0.3231552162849872,0.9694656488549618,0.19770992366412213,0.9885496183206107,0.09999999999999999,1.0,0.9126045074518359,0.9345872251211846,0.9126045074518357
225
+ 7.0,574,0.8625954198473282,0.9656488549618321,0.9961832061068703,1.0,0.8625954198473282,0.8625954198473282,0.3218829516539439,0.9656488549618321,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.9197519083969466,0.9399683976128675,0.9197519083969465
226
+ 8.0,656,0.8702290076335878,0.9732824427480916,0.9961832061068703,1.0,0.8702290076335878,0.8702290076335878,0.32442748091603046,0.9732824427480916,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.9239185750636133,0.943137953659814,0.9239185750636132
227
+ 9.0,738,0.8702290076335878,0.9847328244274809,0.9961832061068703,1.0,0.8702290076335878,0.8702290076335878,0.32824427480916024,0.9847328244274809,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.9260541621228645,0.9448438925115242,0.9260541621228645
228
+ 10.0,820,0.8740458015267175,0.9885496183206107,0.9961832061068703,1.0,0.8740458015267175,0.8740458015267175,0.3295165394402035,0.9885496183206107,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.9293893129770994,0.9474387199824363,0.9293893129770993
229
+ 1.0,82,0.7900763358778626,0.9427480916030534,0.9732824427480916,0.9885496183206107,0.7900763358778626,0.7900763358778626,0.31424936386768443,0.9427480916030534,0.1946564885496183,0.9732824427480916,0.09885496183206106,0.9885496183206107,0.8699215436810859,0.8996247054177539,0.8703782244049421
230
+ 2.0,164,0.8053435114503816,0.950381679389313,0.9770992366412213,0.9923664122137404,0.8053435114503816,0.8053435114503816,0.31679389312977096,0.950381679389313,0.19541984732824424,0.9770992366412213,0.09923664122137404,0.9923664122137404,0.87974372955289,0.9078998779695069,0.8800686887852771
231
+ 3.0,246,0.8206106870229007,0.9580152671755725,0.9847328244274809,0.9961832061068703,0.8206106870229007,0.8206106870229007,0.31933842239185745,0.9580152671755725,0.19694656488549617,0.9847328244274809,0.09961832061068703,0.9961832061068703,0.8925254452926211,0.9185659656783679,0.892678117048346
232
+ 4.0,328,0.8358778625954199,0.9618320610687023,0.9847328244274809,0.9961832061068703,0.8358778625954199,0.8358778625954199,0.3206106870229007,0.9618320610687023,0.19694656488549617,0.9847328244274809,0.09961832061068703,0.9961832061068703,0.9023900399854602,0.9260346818762605,0.9025808796801164
233
+ 5.0,410,0.8587786259541985,0.9618320610687023,0.9847328244274809,0.9961832061068703,0.8587786259541985,0.8587786259541985,0.3206106870229007,0.9618320610687023,0.19694656488549617,0.9847328244274809,0.09961832061068703,0.9961832061068703,0.9151444929116686,0.9354978972435534,0.9154625590694293
234
+ 6.0,492,0.851145038167939,0.9694656488549618,0.9885496183206107,1.0,0.851145038167939,0.851145038167939,0.3231552162849872,0.9694656488549618,0.19770992366412213,0.9885496183206107,0.09999999999999999,1.0,0.9134314794620138,0.935254223229621,0.9134314794620139
235
+ 6.097560975609756,500,0.8549618320610687,0.9732824427480916,0.9885496183206107,1.0,0.8549618320610687,0.8549618320610687,0.32442748091603046,0.9732824427480916,0.19770992366412213,0.9885496183206107,0.09999999999999999,1.0,0.9156579425663395,0.9369274815821216,0.9156579425663395
236
+ 7.0,574,0.8664122137404581,0.9694656488549618,0.9961832061068703,1.0,0.8664122137404581,0.8664122137404581,0.3231552162849872,0.9694656488549618,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.9222373682297347,0.9418771224057744,0.9222373682297346
237
+ 8.0,656,0.8740458015267175,0.9770992366412213,0.9961832061068703,1.0,0.8740458015267175,0.8740458015267175,0.3256997455470737,0.9770992366412213,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.926972010178117,0.945478210120751,0.926972010178117
238
+ 9.0,738,0.8702290076335878,0.9885496183206107,0.9961832061068703,1.0,0.8702290076335878,0.8702290076335878,0.3295165394402035,0.9885496183206107,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.9267539076699383,0.9454430182504718,0.9267539076699383
239
+ 10.0,820,0.8778625954198473,0.9885496183206107,1.0,1.0,0.8778625954198473,0.8778625954198473,0.3295165394402035,0.9885496183206107,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9320610687022901,0.9494640849447513,0.93206106870229
240
+ 1.0,82,0.7938931297709924,0.9465648854961832,0.9732824427480916,0.9885496183206107,0.7938931297709924,0.7938931297709924,0.3155216284987277,0.9465648854961832,0.1946564885496183,0.9732824427480916,0.09885496183206106,0.9885496183206107,0.8727841391009332,0.901797695654115,0.8732408198247893
241
+ 2.0,164,0.8091603053435115,0.950381679389313,0.9770992366412213,0.9923664122137404,0.8091603053435115,0.8091603053435115,0.31679389312977096,0.950381679389313,0.19541984732824424,0.9770992366412213,0.09923664122137404,0.9923664122137404,0.8822882588149765,0.9098082749160717,0.8826132180473637
242
+ 3.0,246,0.8206106870229007,0.9580152671755725,0.9847328244274809,0.9961832061068703,0.8206106870229007,0.8206106870229007,0.31933842239185745,0.9580152671755725,0.19694656488549617,0.9847328244274809,0.09961832061068703,0.9961832061068703,0.8925254452926211,0.9185659656783679,0.892678117048346
243
+ 4.0,328,0.8358778625954199,0.9618320610687023,0.9847328244274809,0.9961832061068703,0.8358778625954199,0.8358778625954199,0.3206106870229007,0.9618320610687023,0.19694656488549617,0.9847328244274809,0.09961832061068703,0.9961832061068703,0.9023900399854602,0.9260346818762605,0.9025808796801164
244
+ 5.0,410,0.8587786259541985,0.9618320610687023,0.9847328244274809,0.9961832061068703,0.8587786259541985,0.8587786259541985,0.3206106870229007,0.9618320610687023,0.19694656488549617,0.9847328244274809,0.09961832061068703,0.9961832061068703,0.9151444929116686,0.9354978972435534,0.9154625590694293
245
+ 6.0,492,0.851145038167939,0.9694656488549618,0.9885496183206107,1.0,0.851145038167939,0.851145038167939,0.3231552162849872,0.9694656488549618,0.19770992366412213,0.9885496183206107,0.09999999999999999,1.0,0.9134314794620138,0.935254223229621,0.9134314794620139
246
+ 6.097560975609756,500,0.8549618320610687,0.9732824427480916,0.9885496183206107,1.0,0.8549618320610687,0.8549618320610687,0.32442748091603046,0.9732824427480916,0.19770992366412213,0.9885496183206107,0.09999999999999999,1.0,0.9156579425663395,0.9369274815821216,0.9156579425663395
247
+ 7.0,574,0.8702290076335878,0.9694656488549618,0.9961832061068703,1.0,0.8702290076335878,0.8702290076335878,0.3231552162849872,0.9694656488549618,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.9247818974918212,0.9437855193523392,0.9247818974918212
248
+ 8.0,656,0.8740458015267175,0.9770992366412213,0.9961832061068703,1.0,0.8740458015267175,0.8740458015267175,0.3256997455470737,0.9770992366412213,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.926972010178117,0.945478210120751,0.926972010178117
249
+ 9.0,738,0.8702290076335878,0.9885496183206107,0.9961832061068703,1.0,0.8702290076335878,0.8702290076335878,0.3295165394402035,0.9885496183206107,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.9267539076699383,0.9454430182504718,0.9267539076699383
250
+ 10.0,820,0.8778625954198473,0.9923664122137404,1.0,1.0,0.8778625954198473,0.8778625954198473,0.3307888040712467,0.9923664122137404,0.19999999999999998,1.0,0.09999999999999999,1.0,0.932379134860051,0.9497286782345475,0.9323791348600509
251
+ 1.0,82,0.7824427480916031,0.9351145038167938,0.9618320610687023,0.9847328244274809,0.7824427480916031,0.7824427480916031,0.31170483460559795,0.9351145038167938,0.19236641221374046,0.9618320610687023,0.09847328244274808,0.9847328244274809,0.8624787955894828,0.8929227090297268,0.8631725291497406
252
+ 2.0,164,0.7977099236641222,0.9389312977099237,0.9656488549618321,0.9885496183206107,0.7977099236641222,0.7977099236641222,0.3129770992366412,0.9389312977099237,0.1931297709923664,0.9656488549618321,0.09885496183206106,0.9885496183206107,0.8717542105900886,0.9007240323507114,0.8723336227486843
253
+ 3.0,246,0.8129770992366412,0.9465648854961832,0.9732824427480916,0.9923664122137404,0.8129770992366412,0.8129770992366412,0.3155216284987277,0.9465648854961832,0.1946564885496183,0.9732824427480916,0.09923664122137404,0.9923664122137404,0.8841648491457653,0.9111560831091692,0.8846586301738973
254
+ 4.0,328,0.8244274809160306,0.950381679389313,0.9809160305343512,0.9961832061068703,0.8244274809160306,0.8244274809160306,0.31679389312977096,0.950381679389313,0.19618320610687023,0.9809160305343512,0.09961832061068703,0.9961832061068703,0.893038894947292,0.9188079421496416,0.8932206470374409
255
+ 5.0,410,0.8473282442748091,0.950381679389313,0.9809160305343512,0.9961832061068703,0.8473282442748091,0.8473282442748091,0.31679389312977096,0.950381679389313,0.19618320610687023,0.9809160305343512,0.09961832061068703,0.9961832061068703,0.9060478007997094,0.9285274260695685,0.90636586695747
256
+ 6.0,492,0.8396946564885496,0.9580152671755725,0.9885496183206107,1.0,0.8396946564885496,0.8396946564885496,0.31933842239185745,0.9580152671755725,0.19770992366412213,0.9885496183206107,0.09999999999999999,1.0,0.9046528535078154,0.928567986295962,0.9046528535078153
257
+ 6.097560975609756,500,0.8396946564885496,0.9656488549618321,0.9885496183206107,1.0,0.8396946564885496,0.8396946564885496,0.3218829516539439,0.9656488549618321,0.19770992366412213,0.9885496183206107,0.09999999999999999,1.0,0.9052889858233371,0.9290971728755544,0.9052889858233371
258
+ 7.0,574,0.851145038167939,0.9656488549618321,0.9961832061068703,1.0,0.851145038167939,0.851145038167939,0.3218829516539439,0.9656488549618321,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.9137404580152673,0.9355654417666999,0.9137404580152672
259
+ 8.0,656,0.8625954198473282,0.9770992366412213,1.0,1.0,0.8625954198473282,0.8625954198473282,0.3256997455470737,0.9770992366412213,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9201017811704835,0.9403697191806669,0.9201017811704835
260
+ 9.0,738,0.8587786259541985,0.9885496183206107,0.9961832061068703,1.0,0.8587786259541985,0.8587786259541985,0.3295165394402035,0.9885496183206107,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.9202926208651401,0.9406373297393221,0.92029262086514
261
+ 10.0,820,0.8625954198473282,0.9847328244274809,0.9961832061068703,1.0,0.8625954198473282,0.8625954198473282,0.32824427480916024,0.9847328244274809,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.9239821882951654,0.9434478633883876,0.9239821882951653
262
+ 11.0,902,0.8587786259541985,0.9885496183206107,1.0,1.0,0.8587786259541985,0.8587786259541985,0.3295165394402035,0.9885496183206107,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9225190839694657,0.9424207596312296,0.9225190839694656
263
+ 12.0,984,0.8625954198473282,0.9961832061068703,1.0,1.0,0.8625954198473282,0.8625954198473282,0.33206106870229,0.9961832061068703,0.19999999999999998,1.0,0.09999999999999999,1.0,0.926526717557252,0.9455253412658232,0.9265267175572519
264
+ 12.195121951219512,1000,0.8625954198473282,0.9961832061068703,1.0,1.0,0.8625954198473282,0.8625954198473282,0.33206106870229,0.9961832061068703,0.19999999999999998,1.0,0.09999999999999999,1.0,0.926526717557252,0.9455253412658232,0.9265267175572519
265
+ 13.0,1066,0.8625954198473282,0.9961832061068703,1.0,1.0,0.8625954198473282,0.8625954198473282,0.33206106870229,0.9961832061068703,0.19999999999999998,1.0,0.09999999999999999,1.0,0.926526717557252,0.9455253412658232,0.9265267175572519
266
+ 14.0,1148,0.8625954198473282,0.9961832061068703,1.0,1.0,0.8625954198473282,0.8625954198473282,0.33206106870229,0.9961832061068703,0.19999999999999998,1.0,0.09999999999999999,1.0,0.926526717557252,0.9455253412658232,0.9265267175572519
267
+ 15.0,1230,0.8625954198473282,0.9961832061068703,1.0,1.0,0.8625954198473282,0.8625954198473282,0.33206106870229,0.9961832061068703,0.19999999999999998,1.0,0.09999999999999999,1.0,0.926526717557252,0.9455253412658232,0.9265267175572519
268
+ 1.0,82,0.7824427480916031,0.9351145038167938,0.9618320610687023,0.9847328244274809,0.7824427480916031,0.7824427480916031,0.31170483460559795,0.9351145038167938,0.19236641221374046,0.9618320610687023,0.09847328244274808,0.9847328244274809,0.8624787955894828,0.8929227090297268,0.8631725291497406
269
+ 2.0,164,0.7977099236641222,0.9389312977099237,0.9656488549618321,0.9885496183206107,0.7977099236641222,0.7977099236641222,0.3129770992366412,0.9389312977099237,0.1931297709923664,0.9656488549618321,0.09885496183206106,0.9885496183206107,0.8717542105900886,0.9007240323507114,0.8723336227486843
270
+ 3.0,246,0.8129770992366412,0.9465648854961832,0.9732824427480916,0.9923664122137404,0.8129770992366412,0.8129770992366412,0.3155216284987277,0.9465648854961832,0.1946564885496183,0.9732824427480916,0.09923664122137404,0.9923664122137404,0.8841648491457653,0.9111560831091692,0.8846586301738973
271
+ 4.0,328,0.8244274809160306,0.950381679389313,0.9809160305343512,0.9961832061068703,0.8244274809160306,0.8244274809160306,0.31679389312977096,0.950381679389313,0.19618320610687023,0.9809160305343512,0.09961832061068703,0.9961832061068703,0.893038894947292,0.9188079421496416,0.8932206470374409
272
+ 5.0,410,0.8473282442748091,0.950381679389313,0.9809160305343512,0.9961832061068703,0.8473282442748091,0.8473282442748091,0.31679389312977096,0.950381679389313,0.19618320610687023,0.9809160305343512,0.09961832061068703,0.9961832061068703,0.9060478007997094,0.9285274260695685,0.90636586695747
273
+ 6.0,492,0.8396946564885496,0.9580152671755725,0.9885496183206107,1.0,0.8396946564885496,0.8396946564885496,0.31933842239185745,0.9580152671755725,0.19770992366412213,0.9885496183206107,0.09999999999999999,1.0,0.9046528535078154,0.928567986295962,0.9046528535078153
274
+ 6.097560975609756,500,0.8396946564885496,0.9656488549618321,0.9885496183206107,1.0,0.8396946564885496,0.8396946564885496,0.3218829516539439,0.9656488549618321,0.19770992366412213,0.9885496183206107,0.09999999999999999,1.0,0.9052889858233371,0.9290971728755544,0.9052889858233371
275
+ 7.0,574,0.851145038167939,0.9656488549618321,0.9961832061068703,1.0,0.851145038167939,0.851145038167939,0.3218829516539439,0.9656488549618321,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.9137404580152673,0.9355654417666999,0.9137404580152672
276
+ 8.0,656,0.8625954198473282,0.9770992366412213,1.0,1.0,0.8625954198473282,0.8625954198473282,0.3256997455470737,0.9770992366412213,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9201017811704835,0.9403697191806669,0.9201017811704835
277
+ 9.0,738,0.8587786259541985,0.9885496183206107,0.9961832061068703,1.0,0.8587786259541985,0.8587786259541985,0.3295165394402035,0.9885496183206107,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.9202926208651401,0.9406373297393221,0.92029262086514
278
+ 10.0,820,0.8625954198473282,0.9847328244274809,0.9961832061068703,1.0,0.8625954198473282,0.8625954198473282,0.32824427480916024,0.9847328244274809,0.19923664122137405,0.9961832061068703,0.09999999999999999,1.0,0.9239821882951654,0.9434478633883876,0.9239821882951653
279
+ 11.0,902,0.8587786259541985,0.9885496183206107,1.0,1.0,0.8587786259541985,0.8587786259541985,0.3295165394402035,0.9885496183206107,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9225190839694657,0.9424207596312296,0.9225190839694656
280
+ 12.0,984,0.8625954198473282,0.9961832061068703,1.0,1.0,0.8625954198473282,0.8625954198473282,0.33206106870229,0.9961832061068703,0.19999999999999998,1.0,0.09999999999999999,1.0,0.926526717557252,0.9455253412658232,0.9265267175572519
281
+ 12.195121951219512,1000,0.8625954198473282,0.9961832061068703,1.0,1.0,0.8625954198473282,0.8625954198473282,0.33206106870229,0.9961832061068703,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9271628498727736,0.9460250731496836,0.9271628498727736
282
+ 13.0,1066,0.8625954198473282,0.9961832061068703,1.0,1.0,0.8625954198473282,0.8625954198473282,0.33206106870229,0.9961832061068703,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9271628498727736,0.9460250731496836,0.9271628498727736
283
+ 14.0,1148,0.8625954198473282,0.9961832061068703,1.0,1.0,0.8625954198473282,0.8625954198473282,0.33206106870229,0.9961832061068703,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9271628498727736,0.9460250731496836,0.9271628498727736
284
+ 15.0,1230,0.8625954198473282,0.9961832061068703,1.0,1.0,0.8625954198473282,0.8625954198473282,0.33206106870229,0.9961832061068703,0.19999999999999998,1.0,0.09999999999999999,1.0,0.9271628498727736,0.9460250731496836,0.9271628498727736
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c79bf5f32af985a0f7bfb5bf7fb1bb6ffea5ed0dc5d965e3e84bfa4238460d9a
3
+ size 438525864
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<extra_id_0>",
4
+ "<extra_id_1>",
5
+ "<extra_id_2>",
6
+ "<extra_id_3>",
7
+ "<extra_id_4>",
8
+ "<extra_id_5>",
9
+ "<extra_id_6>",
10
+ "<extra_id_7>",
11
+ "<extra_id_8>",
12
+ "<extra_id_9>",
13
+ "<extra_id_10>",
14
+ "<extra_id_11>",
15
+ "<extra_id_12>",
16
+ "<extra_id_13>",
17
+ "<extra_id_14>",
18
+ "<extra_id_15>",
19
+ "<extra_id_16>",
20
+ "<extra_id_17>",
21
+ "<extra_id_18>",
22
+ "<extra_id_19>",
23
+ "<extra_id_20>",
24
+ "<extra_id_21>",
25
+ "<extra_id_22>",
26
+ "<extra_id_23>",
27
+ "<extra_id_24>",
28
+ "<extra_id_25>",
29
+ "<extra_id_26>",
30
+ "<extra_id_27>",
31
+ "<extra_id_28>",
32
+ "<extra_id_29>",
33
+ "<extra_id_30>",
34
+ "<extra_id_31>",
35
+ "<extra_id_32>",
36
+ "<extra_id_33>",
37
+ "<extra_id_34>",
38
+ "<extra_id_35>",
39
+ "<extra_id_36>",
40
+ "<extra_id_37>",
41
+ "<extra_id_38>",
42
+ "<extra_id_39>",
43
+ "<extra_id_40>",
44
+ "<extra_id_41>",
45
+ "<extra_id_42>",
46
+ "<extra_id_43>",
47
+ "<extra_id_44>",
48
+ "<extra_id_45>",
49
+ "<extra_id_46>",
50
+ "<extra_id_47>",
51
+ "<extra_id_48>",
52
+ "<extra_id_49>",
53
+ "<extra_id_50>",
54
+ "<extra_id_51>",
55
+ "<extra_id_52>",
56
+ "<extra_id_53>",
57
+ "<extra_id_54>",
58
+ "<extra_id_55>",
59
+ "<extra_id_56>",
60
+ "<extra_id_57>",
61
+ "<extra_id_58>",
62
+ "<extra_id_59>",
63
+ "<extra_id_60>",
64
+ "<extra_id_61>",
65
+ "<extra_id_62>",
66
+ "<extra_id_63>",
67
+ "<extra_id_64>",
68
+ "<extra_id_65>",
69
+ "<extra_id_66>",
70
+ "<extra_id_67>",
71
+ "<extra_id_68>",
72
+ "<extra_id_69>",
73
+ "<extra_id_70>",
74
+ "<extra_id_71>",
75
+ "<extra_id_72>",
76
+ "<extra_id_73>",
77
+ "<extra_id_74>",
78
+ "<extra_id_75>",
79
+ "<extra_id_76>",
80
+ "<extra_id_77>",
81
+ "<extra_id_78>",
82
+ "<extra_id_79>",
83
+ "<extra_id_80>",
84
+ "<extra_id_81>",
85
+ "<extra_id_82>",
86
+ "<extra_id_83>",
87
+ "<extra_id_84>",
88
+ "<extra_id_85>",
89
+ "<extra_id_86>",
90
+ "<extra_id_87>",
91
+ "<extra_id_88>",
92
+ "<extra_id_89>",
93
+ "<extra_id_90>",
94
+ "<extra_id_91>",
95
+ "<extra_id_92>",
96
+ "<extra_id_93>",
97
+ "<extra_id_94>",
98
+ "<extra_id_95>",
99
+ "<extra_id_96>",
100
+ "<extra_id_97>",
101
+ "<extra_id_98>",
102
+ "<extra_id_99>"
103
+ ],
104
+ "eos_token": {
105
+ "content": "</s>",
106
+ "lstrip": false,
107
+ "normalized": false,
108
+ "rstrip": false,
109
+ "single_word": false
110
+ },
111
+ "pad_token": {
112
+ "content": "<pad>",
113
+ "lstrip": false,
114
+ "normalized": false,
115
+ "rstrip": false,
116
+ "single_word": false
117
+ },
118
+ "unk_token": {
119
+ "content": "<unk>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false
124
+ }
125
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,939 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": null,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<pad>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "</s>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "<unk>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "32000": {
29
+ "content": "<extra_id_99>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "32001": {
37
+ "content": "<extra_id_98>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "32002": {
45
+ "content": "<extra_id_97>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "32003": {
53
+ "content": "<extra_id_96>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "32004": {
61
+ "content": "<extra_id_95>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "32005": {
69
+ "content": "<extra_id_94>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "32006": {
77
+ "content": "<extra_id_93>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "32007": {
85
+ "content": "<extra_id_92>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "32008": {
93
+ "content": "<extra_id_91>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "32009": {
101
+ "content": "<extra_id_90>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "32010": {
109
+ "content": "<extra_id_89>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "32011": {
117
+ "content": "<extra_id_88>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "32012": {
125
+ "content": "<extra_id_87>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "32013": {
133
+ "content": "<extra_id_86>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "32014": {
141
+ "content": "<extra_id_85>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "32015": {
149
+ "content": "<extra_id_84>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "32016": {
157
+ "content": "<extra_id_83>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "32017": {
165
+ "content": "<extra_id_82>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "32018": {
173
+ "content": "<extra_id_81>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "32019": {
181
+ "content": "<extra_id_80>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "32020": {
189
+ "content": "<extra_id_79>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "32021": {
197
+ "content": "<extra_id_78>",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "32022": {
205
+ "content": "<extra_id_77>",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "32023": {
213
+ "content": "<extra_id_76>",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "32024": {
221
+ "content": "<extra_id_75>",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "32025": {
229
+ "content": "<extra_id_74>",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "32026": {
237
+ "content": "<extra_id_73>",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "32027": {
245
+ "content": "<extra_id_72>",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "32028": {
253
+ "content": "<extra_id_71>",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "32029": {
261
+ "content": "<extra_id_70>",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "32030": {
269
+ "content": "<extra_id_69>",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "32031": {
277
+ "content": "<extra_id_68>",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "32032": {
285
+ "content": "<extra_id_67>",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "32033": {
293
+ "content": "<extra_id_66>",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "32034": {
301
+ "content": "<extra_id_65>",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": true
307
+ },
308
+ "32035": {
309
+ "content": "<extra_id_64>",
310
+ "lstrip": false,
311
+ "normalized": false,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": true
315
+ },
316
+ "32036": {
317
+ "content": "<extra_id_63>",
318
+ "lstrip": false,
319
+ "normalized": false,
320
+ "rstrip": false,
321
+ "single_word": false,
322
+ "special": true
323
+ },
324
+ "32037": {
325
+ "content": "<extra_id_62>",
326
+ "lstrip": false,
327
+ "normalized": false,
328
+ "rstrip": false,
329
+ "single_word": false,
330
+ "special": true
331
+ },
332
+ "32038": {
333
+ "content": "<extra_id_61>",
334
+ "lstrip": false,
335
+ "normalized": false,
336
+ "rstrip": false,
337
+ "single_word": false,
338
+ "special": true
339
+ },
340
+ "32039": {
341
+ "content": "<extra_id_60>",
342
+ "lstrip": false,
343
+ "normalized": false,
344
+ "rstrip": false,
345
+ "single_word": false,
346
+ "special": true
347
+ },
348
+ "32040": {
349
+ "content": "<extra_id_59>",
350
+ "lstrip": false,
351
+ "normalized": false,
352
+ "rstrip": false,
353
+ "single_word": false,
354
+ "special": true
355
+ },
356
+ "32041": {
357
+ "content": "<extra_id_58>",
358
+ "lstrip": false,
359
+ "normalized": false,
360
+ "rstrip": false,
361
+ "single_word": false,
362
+ "special": true
363
+ },
364
+ "32042": {
365
+ "content": "<extra_id_57>",
366
+ "lstrip": false,
367
+ "normalized": false,
368
+ "rstrip": false,
369
+ "single_word": false,
370
+ "special": true
371
+ },
372
+ "32043": {
373
+ "content": "<extra_id_56>",
374
+ "lstrip": false,
375
+ "normalized": false,
376
+ "rstrip": false,
377
+ "single_word": false,
378
+ "special": true
379
+ },
380
+ "32044": {
381
+ "content": "<extra_id_55>",
382
+ "lstrip": false,
383
+ "normalized": false,
384
+ "rstrip": false,
385
+ "single_word": false,
386
+ "special": true
387
+ },
388
+ "32045": {
389
+ "content": "<extra_id_54>",
390
+ "lstrip": false,
391
+ "normalized": false,
392
+ "rstrip": false,
393
+ "single_word": false,
394
+ "special": true
395
+ },
396
+ "32046": {
397
+ "content": "<extra_id_53>",
398
+ "lstrip": false,
399
+ "normalized": false,
400
+ "rstrip": false,
401
+ "single_word": false,
402
+ "special": true
403
+ },
404
+ "32047": {
405
+ "content": "<extra_id_52>",
406
+ "lstrip": false,
407
+ "normalized": false,
408
+ "rstrip": false,
409
+ "single_word": false,
410
+ "special": true
411
+ },
412
+ "32048": {
413
+ "content": "<extra_id_51>",
414
+ "lstrip": false,
415
+ "normalized": false,
416
+ "rstrip": false,
417
+ "single_word": false,
418
+ "special": true
419
+ },
420
+ "32049": {
421
+ "content": "<extra_id_50>",
422
+ "lstrip": false,
423
+ "normalized": false,
424
+ "rstrip": false,
425
+ "single_word": false,
426
+ "special": true
427
+ },
428
+ "32050": {
429
+ "content": "<extra_id_49>",
430
+ "lstrip": false,
431
+ "normalized": false,
432
+ "rstrip": false,
433
+ "single_word": false,
434
+ "special": true
435
+ },
436
+ "32051": {
437
+ "content": "<extra_id_48>",
438
+ "lstrip": false,
439
+ "normalized": false,
440
+ "rstrip": false,
441
+ "single_word": false,
442
+ "special": true
443
+ },
444
+ "32052": {
445
+ "content": "<extra_id_47>",
446
+ "lstrip": false,
447
+ "normalized": false,
448
+ "rstrip": false,
449
+ "single_word": false,
450
+ "special": true
451
+ },
452
+ "32053": {
453
+ "content": "<extra_id_46>",
454
+ "lstrip": false,
455
+ "normalized": false,
456
+ "rstrip": false,
457
+ "single_word": false,
458
+ "special": true
459
+ },
460
+ "32054": {
461
+ "content": "<extra_id_45>",
462
+ "lstrip": false,
463
+ "normalized": false,
464
+ "rstrip": false,
465
+ "single_word": false,
466
+ "special": true
467
+ },
468
+ "32055": {
469
+ "content": "<extra_id_44>",
470
+ "lstrip": false,
471
+ "normalized": false,
472
+ "rstrip": false,
473
+ "single_word": false,
474
+ "special": true
475
+ },
476
+ "32056": {
477
+ "content": "<extra_id_43>",
478
+ "lstrip": false,
479
+ "normalized": false,
480
+ "rstrip": false,
481
+ "single_word": false,
482
+ "special": true
483
+ },
484
+ "32057": {
485
+ "content": "<extra_id_42>",
486
+ "lstrip": false,
487
+ "normalized": false,
488
+ "rstrip": false,
489
+ "single_word": false,
490
+ "special": true
491
+ },
492
+ "32058": {
493
+ "content": "<extra_id_41>",
494
+ "lstrip": false,
495
+ "normalized": false,
496
+ "rstrip": false,
497
+ "single_word": false,
498
+ "special": true
499
+ },
500
+ "32059": {
501
+ "content": "<extra_id_40>",
502
+ "lstrip": false,
503
+ "normalized": false,
504
+ "rstrip": false,
505
+ "single_word": false,
506
+ "special": true
507
+ },
508
+ "32060": {
509
+ "content": "<extra_id_39>",
510
+ "lstrip": false,
511
+ "normalized": false,
512
+ "rstrip": false,
513
+ "single_word": false,
514
+ "special": true
515
+ },
516
+ "32061": {
517
+ "content": "<extra_id_38>",
518
+ "lstrip": false,
519
+ "normalized": false,
520
+ "rstrip": false,
521
+ "single_word": false,
522
+ "special": true
523
+ },
524
+ "32062": {
525
+ "content": "<extra_id_37>",
526
+ "lstrip": false,
527
+ "normalized": false,
528
+ "rstrip": false,
529
+ "single_word": false,
530
+ "special": true
531
+ },
532
+ "32063": {
533
+ "content": "<extra_id_36>",
534
+ "lstrip": false,
535
+ "normalized": false,
536
+ "rstrip": false,
537
+ "single_word": false,
538
+ "special": true
539
+ },
540
+ "32064": {
541
+ "content": "<extra_id_35>",
542
+ "lstrip": false,
543
+ "normalized": false,
544
+ "rstrip": false,
545
+ "single_word": false,
546
+ "special": true
547
+ },
548
+ "32065": {
549
+ "content": "<extra_id_34>",
550
+ "lstrip": false,
551
+ "normalized": false,
552
+ "rstrip": false,
553
+ "single_word": false,
554
+ "special": true
555
+ },
556
+ "32066": {
557
+ "content": "<extra_id_33>",
558
+ "lstrip": false,
559
+ "normalized": false,
560
+ "rstrip": false,
561
+ "single_word": false,
562
+ "special": true
563
+ },
564
+ "32067": {
565
+ "content": "<extra_id_32>",
566
+ "lstrip": false,
567
+ "normalized": false,
568
+ "rstrip": false,
569
+ "single_word": false,
570
+ "special": true
571
+ },
572
+ "32068": {
573
+ "content": "<extra_id_31>",
574
+ "lstrip": false,
575
+ "normalized": false,
576
+ "rstrip": false,
577
+ "single_word": false,
578
+ "special": true
579
+ },
580
+ "32069": {
581
+ "content": "<extra_id_30>",
582
+ "lstrip": false,
583
+ "normalized": false,
584
+ "rstrip": false,
585
+ "single_word": false,
586
+ "special": true
587
+ },
588
+ "32070": {
589
+ "content": "<extra_id_29>",
590
+ "lstrip": false,
591
+ "normalized": false,
592
+ "rstrip": false,
593
+ "single_word": false,
594
+ "special": true
595
+ },
596
+ "32071": {
597
+ "content": "<extra_id_28>",
598
+ "lstrip": false,
599
+ "normalized": false,
600
+ "rstrip": false,
601
+ "single_word": false,
602
+ "special": true
603
+ },
604
+ "32072": {
605
+ "content": "<extra_id_27>",
606
+ "lstrip": false,
607
+ "normalized": false,
608
+ "rstrip": false,
609
+ "single_word": false,
610
+ "special": true
611
+ },
612
+ "32073": {
613
+ "content": "<extra_id_26>",
614
+ "lstrip": false,
615
+ "normalized": false,
616
+ "rstrip": false,
617
+ "single_word": false,
618
+ "special": true
619
+ },
620
+ "32074": {
621
+ "content": "<extra_id_25>",
622
+ "lstrip": false,
623
+ "normalized": false,
624
+ "rstrip": false,
625
+ "single_word": false,
626
+ "special": true
627
+ },
628
+ "32075": {
629
+ "content": "<extra_id_24>",
630
+ "lstrip": false,
631
+ "normalized": false,
632
+ "rstrip": false,
633
+ "single_word": false,
634
+ "special": true
635
+ },
636
+ "32076": {
637
+ "content": "<extra_id_23>",
638
+ "lstrip": false,
639
+ "normalized": false,
640
+ "rstrip": false,
641
+ "single_word": false,
642
+ "special": true
643
+ },
644
+ "32077": {
645
+ "content": "<extra_id_22>",
646
+ "lstrip": false,
647
+ "normalized": false,
648
+ "rstrip": false,
649
+ "single_word": false,
650
+ "special": true
651
+ },
652
+ "32078": {
653
+ "content": "<extra_id_21>",
654
+ "lstrip": false,
655
+ "normalized": false,
656
+ "rstrip": false,
657
+ "single_word": false,
658
+ "special": true
659
+ },
660
+ "32079": {
661
+ "content": "<extra_id_20>",
662
+ "lstrip": false,
663
+ "normalized": false,
664
+ "rstrip": false,
665
+ "single_word": false,
666
+ "special": true
667
+ },
668
+ "32080": {
669
+ "content": "<extra_id_19>",
670
+ "lstrip": false,
671
+ "normalized": false,
672
+ "rstrip": false,
673
+ "single_word": false,
674
+ "special": true
675
+ },
676
+ "32081": {
677
+ "content": "<extra_id_18>",
678
+ "lstrip": false,
679
+ "normalized": false,
680
+ "rstrip": false,
681
+ "single_word": false,
682
+ "special": true
683
+ },
684
+ "32082": {
685
+ "content": "<extra_id_17>",
686
+ "lstrip": false,
687
+ "normalized": false,
688
+ "rstrip": false,
689
+ "single_word": false,
690
+ "special": true
691
+ },
692
+ "32083": {
693
+ "content": "<extra_id_16>",
694
+ "lstrip": false,
695
+ "normalized": false,
696
+ "rstrip": false,
697
+ "single_word": false,
698
+ "special": true
699
+ },
700
+ "32084": {
701
+ "content": "<extra_id_15>",
702
+ "lstrip": false,
703
+ "normalized": false,
704
+ "rstrip": false,
705
+ "single_word": false,
706
+ "special": true
707
+ },
708
+ "32085": {
709
+ "content": "<extra_id_14>",
710
+ "lstrip": false,
711
+ "normalized": false,
712
+ "rstrip": false,
713
+ "single_word": false,
714
+ "special": true
715
+ },
716
+ "32086": {
717
+ "content": "<extra_id_13>",
718
+ "lstrip": false,
719
+ "normalized": false,
720
+ "rstrip": false,
721
+ "single_word": false,
722
+ "special": true
723
+ },
724
+ "32087": {
725
+ "content": "<extra_id_12>",
726
+ "lstrip": false,
727
+ "normalized": false,
728
+ "rstrip": false,
729
+ "single_word": false,
730
+ "special": true
731
+ },
732
+ "32088": {
733
+ "content": "<extra_id_11>",
734
+ "lstrip": false,
735
+ "normalized": false,
736
+ "rstrip": false,
737
+ "single_word": false,
738
+ "special": true
739
+ },
740
+ "32089": {
741
+ "content": "<extra_id_10>",
742
+ "lstrip": false,
743
+ "normalized": false,
744
+ "rstrip": false,
745
+ "single_word": false,
746
+ "special": true
747
+ },
748
+ "32090": {
749
+ "content": "<extra_id_9>",
750
+ "lstrip": false,
751
+ "normalized": false,
752
+ "rstrip": false,
753
+ "single_word": false,
754
+ "special": true
755
+ },
756
+ "32091": {
757
+ "content": "<extra_id_8>",
758
+ "lstrip": false,
759
+ "normalized": false,
760
+ "rstrip": false,
761
+ "single_word": false,
762
+ "special": true
763
+ },
764
+ "32092": {
765
+ "content": "<extra_id_7>",
766
+ "lstrip": false,
767
+ "normalized": false,
768
+ "rstrip": false,
769
+ "single_word": false,
770
+ "special": true
771
+ },
772
+ "32093": {
773
+ "content": "<extra_id_6>",
774
+ "lstrip": false,
775
+ "normalized": false,
776
+ "rstrip": false,
777
+ "single_word": false,
778
+ "special": true
779
+ },
780
+ "32094": {
781
+ "content": "<extra_id_5>",
782
+ "lstrip": false,
783
+ "normalized": false,
784
+ "rstrip": false,
785
+ "single_word": false,
786
+ "special": true
787
+ },
788
+ "32095": {
789
+ "content": "<extra_id_4>",
790
+ "lstrip": false,
791
+ "normalized": false,
792
+ "rstrip": false,
793
+ "single_word": false,
794
+ "special": true
795
+ },
796
+ "32096": {
797
+ "content": "<extra_id_3>",
798
+ "lstrip": false,
799
+ "normalized": false,
800
+ "rstrip": false,
801
+ "single_word": false,
802
+ "special": true
803
+ },
804
+ "32097": {
805
+ "content": "<extra_id_2>",
806
+ "lstrip": false,
807
+ "normalized": false,
808
+ "rstrip": false,
809
+ "single_word": false,
810
+ "special": true
811
+ },
812
+ "32098": {
813
+ "content": "<extra_id_1>",
814
+ "lstrip": false,
815
+ "normalized": false,
816
+ "rstrip": false,
817
+ "single_word": false,
818
+ "special": true
819
+ },
820
+ "32099": {
821
+ "content": "<extra_id_0>",
822
+ "lstrip": false,
823
+ "normalized": false,
824
+ "rstrip": false,
825
+ "single_word": false,
826
+ "special": true
827
+ }
828
+ },
829
+ "additional_special_tokens": [
830
+ "<extra_id_0>",
831
+ "<extra_id_1>",
832
+ "<extra_id_2>",
833
+ "<extra_id_3>",
834
+ "<extra_id_4>",
835
+ "<extra_id_5>",
836
+ "<extra_id_6>",
837
+ "<extra_id_7>",
838
+ "<extra_id_8>",
839
+ "<extra_id_9>",
840
+ "<extra_id_10>",
841
+ "<extra_id_11>",
842
+ "<extra_id_12>",
843
+ "<extra_id_13>",
844
+ "<extra_id_14>",
845
+ "<extra_id_15>",
846
+ "<extra_id_16>",
847
+ "<extra_id_17>",
848
+ "<extra_id_18>",
849
+ "<extra_id_19>",
850
+ "<extra_id_20>",
851
+ "<extra_id_21>",
852
+ "<extra_id_22>",
853
+ "<extra_id_23>",
854
+ "<extra_id_24>",
855
+ "<extra_id_25>",
856
+ "<extra_id_26>",
857
+ "<extra_id_27>",
858
+ "<extra_id_28>",
859
+ "<extra_id_29>",
860
+ "<extra_id_30>",
861
+ "<extra_id_31>",
862
+ "<extra_id_32>",
863
+ "<extra_id_33>",
864
+ "<extra_id_34>",
865
+ "<extra_id_35>",
866
+ "<extra_id_36>",
867
+ "<extra_id_37>",
868
+ "<extra_id_38>",
869
+ "<extra_id_39>",
870
+ "<extra_id_40>",
871
+ "<extra_id_41>",
872
+ "<extra_id_42>",
873
+ "<extra_id_43>",
874
+ "<extra_id_44>",
875
+ "<extra_id_45>",
876
+ "<extra_id_46>",
877
+ "<extra_id_47>",
878
+ "<extra_id_48>",
879
+ "<extra_id_49>",
880
+ "<extra_id_50>",
881
+ "<extra_id_51>",
882
+ "<extra_id_52>",
883
+ "<extra_id_53>",
884
+ "<extra_id_54>",
885
+ "<extra_id_55>",
886
+ "<extra_id_56>",
887
+ "<extra_id_57>",
888
+ "<extra_id_58>",
889
+ "<extra_id_59>",
890
+ "<extra_id_60>",
891
+ "<extra_id_61>",
892
+ "<extra_id_62>",
893
+ "<extra_id_63>",
894
+ "<extra_id_64>",
895
+ "<extra_id_65>",
896
+ "<extra_id_66>",
897
+ "<extra_id_67>",
898
+ "<extra_id_68>",
899
+ "<extra_id_69>",
900
+ "<extra_id_70>",
901
+ "<extra_id_71>",
902
+ "<extra_id_72>",
903
+ "<extra_id_73>",
904
+ "<extra_id_74>",
905
+ "<extra_id_75>",
906
+ "<extra_id_76>",
907
+ "<extra_id_77>",
908
+ "<extra_id_78>",
909
+ "<extra_id_79>",
910
+ "<extra_id_80>",
911
+ "<extra_id_81>",
912
+ "<extra_id_82>",
913
+ "<extra_id_83>",
914
+ "<extra_id_84>",
915
+ "<extra_id_85>",
916
+ "<extra_id_86>",
917
+ "<extra_id_87>",
918
+ "<extra_id_88>",
919
+ "<extra_id_89>",
920
+ "<extra_id_90>",
921
+ "<extra_id_91>",
922
+ "<extra_id_92>",
923
+ "<extra_id_93>",
924
+ "<extra_id_94>",
925
+ "<extra_id_95>",
926
+ "<extra_id_96>",
927
+ "<extra_id_97>",
928
+ "<extra_id_98>",
929
+ "<extra_id_99>"
930
+ ],
931
+ "clean_up_tokenization_spaces": true,
932
+ "eos_token": "</s>",
933
+ "extra_ids": 100,
934
+ "extra_special_tokens": {},
935
+ "model_max_length": 512,
936
+ "pad_token": "<pad>",
937
+ "tokenizer_class": "T5Tokenizer",
938
+ "unk_token": "<unk>"
939
+ }