Upload 34 files
Browse files- README.md +43 -3
- adapter_config.json +29 -0
- adapter_model.safetensors +3 -0
- global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step2000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step2000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step2000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step2000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- global_step2000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- global_step2000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- global_step2000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- global_step2000/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- global_step2000/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- global_step2000/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- global_step2000/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- global_step2000/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- global_step2000/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- special_tokens_map.json +27 -0
- tokenizer.json +0 -0
- tokenizer_config.json +223 -0
- trainer_state.json +653 -0
- training_args.bin +3 -0
- zero_to_fp32.py +604 -0
README.md
CHANGED
@@ -1,3 +1,43 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Reviewer-14B
|
7 |
+
|
8 |
+
## Model Details
|
9 |
+
|
10 |
+
### Model Description
|
11 |
+
|
12 |
+
Reviewer-14B is a fine-tuned on [**DeepSeek-R1-Distill-Qwen-14B**](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B), optimized for selecting the best patch among multiple patches generated by our DARS agent while solving software engineering problems.
|
13 |
+
|
14 |
+
### Model Sources
|
15 |
+
|
16 |
+
- **Repository:** [DARS-14B Repository](https://github.com/darsagent/DARS-Agent)
|
17 |
+
- **Paper:** ["DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal"](https://drive.google.com/file/d/1DMAZ-fkirC8uKl8819cOq9J3BQ4E7GXR/view?usp=drive_link)
|
18 |
+
|
19 |
+
## How to Get Started with the Model
|
20 |
+
We use vLLM to deploy and infer the model. Please follow this tutorial [here]((https://docs.vllm.ai/en/latest/features/lora.html)) to use our LoRA weights with vLLM.
|
21 |
+
|
22 |
+
## Training Details
|
23 |
+
|
24 |
+
### Dataset
|
25 |
+
|
26 |
+
We use our [code review dataset](https://huggingface.co/datasets/AGENTDARS/generated-critiques) where each instance contains several git patches with critiques for each each patch. The model learns to generate critiques for multiple patches and select the best patch.
|
27 |
+
|
28 |
+
### Training Procedure
|
29 |
+
|
30 |
+
| Hyperparameter | Value |
|
31 |
+
|----------------------|--------------------------------------------|
|
32 |
+
| Training regime | BF16 mixed precision |
|
33 |
+
| Optimizer | AdamW with cosine learning rate scheduler |
|
34 |
+
| LoRA Configuration | rank=8, alpha=32, dropout=0.1 |
|
35 |
+
| Batch Size | 48 |
|
36 |
+
| Learning Rate | 5e-6 |
|
37 |
+
| Sequence Length | 14K tokens |
|
38 |
+
| Fine-tuning Epochs | 1 |
|
39 |
+
| Compute Environment | DeepSpeed for memory-efficient distributed training |
|
40 |
+
| Compute Infrastructure | 8x H100 |
|
41 |
+
|
42 |
+
## Results
|
43 |
+
Using this model as a reviewer with DARS trajectories generated using Claude 3.5 Sonnet V2 achieves 41.7% on SWE-Bench Lite.
|
adapter_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/home/dars/Qwen2.5-Coder/models/deepseek-14b/",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"q_proj",
|
24 |
+
"v_proj"
|
25 |
+
],
|
26 |
+
"task_type": "CAUSAL_LM",
|
27 |
+
"use_dora": false,
|
28 |
+
"use_rslora": false
|
29 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:157c15152bce8e797dfa01f6e466d29429fa6c83df9d2278c90f23d4b64ebae9
|
3 |
+
size 12608496
|
global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f8a8aad76113e84b54cf7d3c303a9b19125ac980c9f3bc26ff48c123355f41f
|
3 |
+
size 9440912
|
global_step2000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a92407e6c77b137b11809a3d6e3332ce01c6b44dfaf906f931ed6c37da568fb
|
3 |
+
size 9440912
|
global_step2000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3b8fad66457b17e20b005a16d3afbbe7284aa4191b7e41d4141687f8cebb058
|
3 |
+
size 9440912
|
global_step2000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8c9401c5e7a03c7880f43bb7a862a7b82063f8bfa147b366a529d8c44eb396e
|
3 |
+
size 9440912
|
global_step2000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e116b3abfbf167542dfb4cf1d05cf724f6e395d41ec236218a47882a54b3a1c1
|
3 |
+
size 9440912
|
global_step2000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5027c1fa90f40b1c4b9649b6e2a7a4f9e64ac55c5845b383e4fcbf78c499c4c8
|
3 |
+
size 9440912
|
global_step2000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2b4a4f5b2c0add41f7b9471da74ca7340ae888ae11ac5ab60be2bcc1b2857b9
|
3 |
+
size 9440912
|
global_step2000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f761562e37a8fb2fc45449f1efdb2898b0ed05d1a200f27e9d6d9ec426137e5
|
3 |
+
size 9440912
|
global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3be128cab192df1962334a33f6aaab5f0b2e506c62a5a20dd9ce97c8e7b5cb4
|
3 |
+
size 228398
|
global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:463d30b2fb4f41dafe42c4f4bb16db903a7fb192b056f3615bc84331c7d912c9
|
3 |
+
size 228398
|
global_step2000/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1969eb6fe91040b1904eeecfcf4cf5918ca5bde4906b9a453d30f3958a357b3
|
3 |
+
size 228398
|
global_step2000/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2315308eca50010ad291aa15be29979a4ff7517c31afaabc9965f892e6087863
|
3 |
+
size 228398
|
global_step2000/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:329e7389a9356d81428ca5cca5914e87c2c252fa101b8dac3b0fc86bf61dbf80
|
3 |
+
size 228398
|
global_step2000/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d108ae6ebfd137dd064635fe64a9abf2031a45ee99359cd357c5f5359a8d5305
|
3 |
+
size 228398
|
global_step2000/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6f10280fac8ea18a1b9716f90c4f21ebd1c17f3ec585294a20dee201700ff98
|
3 |
+
size 228398
|
global_step2000/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a5782a01e1ef7abdf7d083035263a60a8a479ba17ec06304cbc0426ba3f45fc
|
3 |
+
size 228398
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step2000
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e832b43e588d740d3f07dc0a44d65ab5ce8a3e06e28c23014052b0ba2d54ad21
|
3 |
+
size 15920
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d09ac95eeabbb6f44c57a6d15a7dab491542295abbb790c351f496fb5ad3319
|
3 |
+
size 15920
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53cb30810e690ff974d7d060095a4a9fb8587590bff41323eb6ee094f71c9647
|
3 |
+
size 15920
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06a8c290881b49fb26b7e3876ab4e6409d7506a8d64bd0d3b4e2479e976e5fae
|
3 |
+
size 15920
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e3bd90ae12b6576ffc76b434c14036de3a16c05721e44bcb23fc3b67101e66a
|
3 |
+
size 15920
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b59c3b71c7beadeea672b59b1f0f6c37896012b23b5763cd194fabf9fc01b41
|
3 |
+
size 15920
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76b9e1212c0a9b1c0778a79289f15e73c750fd9510950ae55fdd47b4db37c7a4
|
3 |
+
size 15920
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00814da94919dc36b80b7dc43dd9e7f49c59fd651eadb84f772bdf9598171438
|
3 |
+
size 15920
|
special_tokens_map.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<|im_end|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"content": "<|im_start|>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"bos_token": {
|
19 |
+
"content": "<|begin▁of▁sentence|>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
},
|
25 |
+
"eos_token": "<|im_end|>",
|
26 |
+
"pad_token": "<|endoftext|>"
|
27 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|end▁of▁sentence|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|User|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": false
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|Assistant|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": false
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|begin▁of▁sentence|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|EOT|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": false
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<think>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": false
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "</think>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": false
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<|im_end|>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "<|endoftext|>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": true
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<|im_start|>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": true
|
204 |
+
}
|
205 |
+
},
|
206 |
+
"additional_special_tokens": [
|
207 |
+
"<|im_end|>",
|
208 |
+
"<|im_start|>"
|
209 |
+
],
|
210 |
+
"bos_token": "<|begin▁of▁sentence|>",
|
211 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}",
|
212 |
+
"clean_up_tokenization_spaces": false,
|
213 |
+
"eos_token": "<|im_end|>",
|
214 |
+
"legacy": true,
|
215 |
+
"model_max_length": 14000,
|
216 |
+
"pad_token": "<|endoftext|>",
|
217 |
+
"padding_side": "right",
|
218 |
+
"sp_model_kwargs": {},
|
219 |
+
"tokenizer_class": "LlamaTokenizer",
|
220 |
+
"truncation": true,
|
221 |
+
"unk_token": null,
|
222 |
+
"use_default_system_prompt": false
|
223 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.5482456140350878,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 2000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.005482456140350877,
|
13 |
+
"learning_rate": 3.2525749891599526e-06,
|
14 |
+
"loss": 1.627,
|
15 |
+
"step": 20
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.010964912280701754,
|
19 |
+
"learning_rate": 4.0051499783199055e-06,
|
20 |
+
"loss": 1.6081,
|
21 |
+
"step": 40
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.01644736842105263,
|
25 |
+
"learning_rate": 4.445378125959108e-06,
|
26 |
+
"loss": 1.587,
|
27 |
+
"step": 60
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.021929824561403508,
|
31 |
+
"learning_rate": 4.757724967479858e-06,
|
32 |
+
"loss": 1.5592,
|
33 |
+
"step": 80
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.027412280701754384,
|
37 |
+
"learning_rate": 4.9999999999999996e-06,
|
38 |
+
"loss": 1.5009,
|
39 |
+
"step": 100
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.03289473684210526,
|
43 |
+
"learning_rate": 4.9756410256410255e-06,
|
44 |
+
"loss": 1.4438,
|
45 |
+
"step": 120
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.03837719298245614,
|
49 |
+
"learning_rate": 4.95e-06,
|
50 |
+
"loss": 1.3777,
|
51 |
+
"step": 140
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.043859649122807015,
|
55 |
+
"learning_rate": 4.9243589743589745e-06,
|
56 |
+
"loss": 1.3215,
|
57 |
+
"step": 160
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.049342105263157895,
|
61 |
+
"learning_rate": 4.898717948717949e-06,
|
62 |
+
"loss": 1.267,
|
63 |
+
"step": 180
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.05482456140350877,
|
67 |
+
"learning_rate": 4.8730769230769235e-06,
|
68 |
+
"loss": 1.2095,
|
69 |
+
"step": 200
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.06030701754385965,
|
73 |
+
"learning_rate": 4.847435897435897e-06,
|
74 |
+
"loss": 1.1684,
|
75 |
+
"step": 220
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.06578947368421052,
|
79 |
+
"learning_rate": 4.821794871794872e-06,
|
80 |
+
"loss": 1.1054,
|
81 |
+
"step": 240
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.0712719298245614,
|
85 |
+
"learning_rate": 4.796153846153846e-06,
|
86 |
+
"loss": 1.0593,
|
87 |
+
"step": 260
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.07675438596491228,
|
91 |
+
"learning_rate": 4.770512820512821e-06,
|
92 |
+
"loss": 1.0069,
|
93 |
+
"step": 280
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.08223684210526316,
|
97 |
+
"learning_rate": 4.744871794871795e-06,
|
98 |
+
"loss": 0.9498,
|
99 |
+
"step": 300
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.08771929824561403,
|
103 |
+
"learning_rate": 4.71923076923077e-06,
|
104 |
+
"loss": 0.8949,
|
105 |
+
"step": 320
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.09320175438596491,
|
109 |
+
"learning_rate": 4.693589743589744e-06,
|
110 |
+
"loss": 0.8369,
|
111 |
+
"step": 340
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.09868421052631579,
|
115 |
+
"learning_rate": 4.667948717948718e-06,
|
116 |
+
"loss": 0.8047,
|
117 |
+
"step": 360
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.10416666666666667,
|
121 |
+
"learning_rate": 4.642307692307692e-06,
|
122 |
+
"loss": 0.781,
|
123 |
+
"step": 380
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.10964912280701754,
|
127 |
+
"learning_rate": 4.616666666666667e-06,
|
128 |
+
"loss": 0.7535,
|
129 |
+
"step": 400
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.11513157894736842,
|
133 |
+
"learning_rate": 4.591025641025641e-06,
|
134 |
+
"loss": 0.7332,
|
135 |
+
"step": 420
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.1206140350877193,
|
139 |
+
"learning_rate": 4.565384615384616e-06,
|
140 |
+
"loss": 0.7171,
|
141 |
+
"step": 440
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.12609649122807018,
|
145 |
+
"learning_rate": 4.53974358974359e-06,
|
146 |
+
"loss": 0.7074,
|
147 |
+
"step": 460
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.13157894736842105,
|
151 |
+
"learning_rate": 4.514102564102564e-06,
|
152 |
+
"loss": 0.6905,
|
153 |
+
"step": 480
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.13706140350877194,
|
157 |
+
"learning_rate": 4.4884615384615384e-06,
|
158 |
+
"loss": 0.6812,
|
159 |
+
"step": 500
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.13706140350877194,
|
163 |
+
"eval_loss": 0.6900227665901184,
|
164 |
+
"eval_runtime": 7.1872,
|
165 |
+
"eval_samples_per_second": 13.635,
|
166 |
+
"eval_steps_per_second": 1.809,
|
167 |
+
"step": 500
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"epoch": 0.1425438596491228,
|
171 |
+
"learning_rate": 4.462820512820513e-06,
|
172 |
+
"loss": 0.6753,
|
173 |
+
"step": 520
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 0.14802631578947367,
|
177 |
+
"learning_rate": 4.437179487179487e-06,
|
178 |
+
"loss": 0.6637,
|
179 |
+
"step": 540
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.15350877192982457,
|
183 |
+
"learning_rate": 4.411538461538462e-06,
|
184 |
+
"loss": 0.6615,
|
185 |
+
"step": 560
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.15899122807017543,
|
189 |
+
"learning_rate": 4.385897435897436e-06,
|
190 |
+
"loss": 0.6547,
|
191 |
+
"step": 580
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.16447368421052633,
|
195 |
+
"learning_rate": 4.36025641025641e-06,
|
196 |
+
"loss": 0.6487,
|
197 |
+
"step": 600
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 0.1699561403508772,
|
201 |
+
"learning_rate": 4.3346153846153846e-06,
|
202 |
+
"loss": 0.6441,
|
203 |
+
"step": 620
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"epoch": 0.17543859649122806,
|
207 |
+
"learning_rate": 4.308974358974359e-06,
|
208 |
+
"loss": 0.6358,
|
209 |
+
"step": 640
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.18092105263157895,
|
213 |
+
"learning_rate": 4.2833333333333335e-06,
|
214 |
+
"loss": 0.636,
|
215 |
+
"step": 660
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 0.18640350877192982,
|
219 |
+
"learning_rate": 4.257692307692308e-06,
|
220 |
+
"loss": 0.6326,
|
221 |
+
"step": 680
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.19188596491228072,
|
225 |
+
"learning_rate": 4.2320512820512825e-06,
|
226 |
+
"loss": 0.6246,
|
227 |
+
"step": 700
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.19736842105263158,
|
231 |
+
"learning_rate": 4.206410256410256e-06,
|
232 |
+
"loss": 0.6237,
|
233 |
+
"step": 720
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.20285087719298245,
|
237 |
+
"learning_rate": 4.180769230769231e-06,
|
238 |
+
"loss": 0.6203,
|
239 |
+
"step": 740
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.20833333333333334,
|
243 |
+
"learning_rate": 4.155128205128205e-06,
|
244 |
+
"loss": 0.6164,
|
245 |
+
"step": 760
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 0.2138157894736842,
|
249 |
+
"learning_rate": 4.12948717948718e-06,
|
250 |
+
"loss": 0.6118,
|
251 |
+
"step": 780
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 0.21929824561403508,
|
255 |
+
"learning_rate": 4.103846153846154e-06,
|
256 |
+
"loss": 0.6101,
|
257 |
+
"step": 800
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.22478070175438597,
|
261 |
+
"learning_rate": 4.078205128205129e-06,
|
262 |
+
"loss": 0.6092,
|
263 |
+
"step": 820
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.23026315789473684,
|
267 |
+
"learning_rate": 4.052564102564102e-06,
|
268 |
+
"loss": 0.6039,
|
269 |
+
"step": 840
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.23574561403508773,
|
273 |
+
"learning_rate": 4.026923076923077e-06,
|
274 |
+
"loss": 0.5989,
|
275 |
+
"step": 860
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.2412280701754386,
|
279 |
+
"learning_rate": 4.001282051282051e-06,
|
280 |
+
"loss": 0.5979,
|
281 |
+
"step": 880
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.24671052631578946,
|
285 |
+
"learning_rate": 3.975641025641026e-06,
|
286 |
+
"loss": 0.5965,
|
287 |
+
"step": 900
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 0.25219298245614036,
|
291 |
+
"learning_rate": 3.95e-06,
|
292 |
+
"loss": 0.5969,
|
293 |
+
"step": 920
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 0.2576754385964912,
|
297 |
+
"learning_rate": 3.924358974358975e-06,
|
298 |
+
"loss": 0.5902,
|
299 |
+
"step": 940
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.2631578947368421,
|
303 |
+
"learning_rate": 3.8987179487179484e-06,
|
304 |
+
"loss": 0.5909,
|
305 |
+
"step": 960
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.26864035087719296,
|
309 |
+
"learning_rate": 3.873076923076923e-06,
|
310 |
+
"loss": 0.5914,
|
311 |
+
"step": 980
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.2741228070175439,
|
315 |
+
"learning_rate": 3.8474358974358974e-06,
|
316 |
+
"loss": 0.589,
|
317 |
+
"step": 1000
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.2741228070175439,
|
321 |
+
"eval_loss": 0.5962496399879456,
|
322 |
+
"eval_runtime": 6.5411,
|
323 |
+
"eval_samples_per_second": 14.982,
|
324 |
+
"eval_steps_per_second": 1.987,
|
325 |
+
"step": 1000
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.27960526315789475,
|
329 |
+
"learning_rate": 3.821794871794872e-06,
|
330 |
+
"loss": 0.5844,
|
331 |
+
"step": 1020
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.2850877192982456,
|
335 |
+
"learning_rate": 3.7961538461538464e-06,
|
336 |
+
"loss": 0.5819,
|
337 |
+
"step": 1040
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"epoch": 0.2905701754385965,
|
341 |
+
"learning_rate": 3.770512820512821e-06,
|
342 |
+
"loss": 0.5828,
|
343 |
+
"step": 1060
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"epoch": 0.29605263157894735,
|
347 |
+
"learning_rate": 3.744871794871795e-06,
|
348 |
+
"loss": 0.5816,
|
349 |
+
"step": 1080
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 0.30153508771929827,
|
353 |
+
"learning_rate": 3.7192307692307695e-06,
|
354 |
+
"loss": 0.5773,
|
355 |
+
"step": 1100
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 0.30701754385964913,
|
359 |
+
"learning_rate": 3.693589743589744e-06,
|
360 |
+
"loss": 0.5782,
|
361 |
+
"step": 1120
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.3125,
|
365 |
+
"learning_rate": 3.6679487179487185e-06,
|
366 |
+
"loss": 0.5774,
|
367 |
+
"step": 1140
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.31798245614035087,
|
371 |
+
"learning_rate": 3.642307692307693e-06,
|
372 |
+
"loss": 0.5733,
|
373 |
+
"step": 1160
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.32346491228070173,
|
377 |
+
"learning_rate": 3.616666666666667e-06,
|
378 |
+
"loss": 0.5722,
|
379 |
+
"step": 1180
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"epoch": 0.32894736842105265,
|
383 |
+
"learning_rate": 3.591025641025641e-06,
|
384 |
+
"loss": 0.569,
|
385 |
+
"step": 1200
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"epoch": 0.3344298245614035,
|
389 |
+
"learning_rate": 3.5653846153846156e-06,
|
390 |
+
"loss": 0.5699,
|
391 |
+
"step": 1220
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 0.3399122807017544,
|
395 |
+
"learning_rate": 3.53974358974359e-06,
|
396 |
+
"loss": 0.5691,
|
397 |
+
"step": 1240
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"epoch": 0.34539473684210525,
|
401 |
+
"learning_rate": 3.5141025641025646e-06,
|
402 |
+
"loss": 0.5706,
|
403 |
+
"step": 1260
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.3508771929824561,
|
407 |
+
"learning_rate": 3.488461538461539e-06,
|
408 |
+
"loss": 0.565,
|
409 |
+
"step": 1280
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.35635964912280704,
|
413 |
+
"learning_rate": 3.462820512820513e-06,
|
414 |
+
"loss": 0.5652,
|
415 |
+
"step": 1300
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.3618421052631579,
|
419 |
+
"learning_rate": 3.4371794871794873e-06,
|
420 |
+
"loss": 0.5631,
|
421 |
+
"step": 1320
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 0.3673245614035088,
|
425 |
+
"learning_rate": 3.4115384615384617e-06,
|
426 |
+
"loss": 0.5652,
|
427 |
+
"step": 1340
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"epoch": 0.37280701754385964,
|
431 |
+
"learning_rate": 3.3858974358974362e-06,
|
432 |
+
"loss": 0.5627,
|
433 |
+
"step": 1360
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"epoch": 0.3782894736842105,
|
437 |
+
"learning_rate": 3.3602564102564107e-06,
|
438 |
+
"loss": 0.5662,
|
439 |
+
"step": 1380
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"epoch": 0.38377192982456143,
|
443 |
+
"learning_rate": 3.3346153846153852e-06,
|
444 |
+
"loss": 0.5606,
|
445 |
+
"step": 1400
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 0.3892543859649123,
|
449 |
+
"learning_rate": 3.3089743589743593e-06,
|
450 |
+
"loss": 0.5616,
|
451 |
+
"step": 1420
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.39473684210526316,
|
455 |
+
"learning_rate": 3.2833333333333334e-06,
|
456 |
+
"loss": 0.5624,
|
457 |
+
"step": 1440
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.40021929824561403,
|
461 |
+
"learning_rate": 3.257692307692308e-06,
|
462 |
+
"loss": 0.5578,
|
463 |
+
"step": 1460
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"epoch": 0.4057017543859649,
|
467 |
+
"learning_rate": 3.2320512820512824e-06,
|
468 |
+
"loss": 0.5577,
|
469 |
+
"step": 1480
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"epoch": 0.41118421052631576,
|
473 |
+
"learning_rate": 3.206410256410257e-06,
|
474 |
+
"loss": 0.5586,
|
475 |
+
"step": 1500
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"epoch": 0.41118421052631576,
|
479 |
+
"eval_loss": 0.5718954801559448,
|
480 |
+
"eval_runtime": 6.5348,
|
481 |
+
"eval_samples_per_second": 14.997,
|
482 |
+
"eval_steps_per_second": 1.989,
|
483 |
+
"step": 1500
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.4166666666666667,
|
487 |
+
"learning_rate": 3.1807692307692314e-06,
|
488 |
+
"loss": 0.5603,
|
489 |
+
"step": 1520
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.42214912280701755,
|
493 |
+
"learning_rate": 3.1551282051282054e-06,
|
494 |
+
"loss": 0.5567,
|
495 |
+
"step": 1540
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.4276315789473684,
|
499 |
+
"learning_rate": 3.1294871794871795e-06,
|
500 |
+
"loss": 0.5565,
|
501 |
+
"step": 1560
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.4331140350877193,
|
505 |
+
"learning_rate": 3.103846153846154e-06,
|
506 |
+
"loss": 0.552,
|
507 |
+
"step": 1580
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.43859649122807015,
|
511 |
+
"learning_rate": 3.0782051282051285e-06,
|
512 |
+
"loss": 0.5553,
|
513 |
+
"step": 1600
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.4440789473684211,
|
517 |
+
"learning_rate": 3.052564102564103e-06,
|
518 |
+
"loss": 0.5528,
|
519 |
+
"step": 1620
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.44956140350877194,
|
523 |
+
"learning_rate": 3.0269230769230775e-06,
|
524 |
+
"loss": 0.5446,
|
525 |
+
"step": 1640
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.4550438596491228,
|
529 |
+
"learning_rate": 3.0012820512820516e-06,
|
530 |
+
"loss": 0.5525,
|
531 |
+
"step": 1660
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.4605263157894737,
|
535 |
+
"learning_rate": 2.9756410256410256e-06,
|
536 |
+
"loss": 0.5504,
|
537 |
+
"step": 1680
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.46600877192982454,
|
541 |
+
"learning_rate": 2.95e-06,
|
542 |
+
"loss": 0.5528,
|
543 |
+
"step": 1700
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.47149122807017546,
|
547 |
+
"learning_rate": 2.9243589743589746e-06,
|
548 |
+
"loss": 0.5502,
|
549 |
+
"step": 1720
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.4769736842105263,
|
553 |
+
"learning_rate": 2.898717948717949e-06,
|
554 |
+
"loss": 0.5512,
|
555 |
+
"step": 1740
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.4824561403508772,
|
559 |
+
"learning_rate": 2.8730769230769236e-06,
|
560 |
+
"loss": 0.5476,
|
561 |
+
"step": 1760
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.48793859649122806,
|
565 |
+
"learning_rate": 2.8474358974358977e-06,
|
566 |
+
"loss": 0.5489,
|
567 |
+
"step": 1780
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.4934210526315789,
|
571 |
+
"learning_rate": 2.8217948717948718e-06,
|
572 |
+
"loss": 0.5522,
|
573 |
+
"step": 1800
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.49890350877192985,
|
577 |
+
"learning_rate": 2.7961538461538463e-06,
|
578 |
+
"loss": 0.5463,
|
579 |
+
"step": 1820
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.5043859649122807,
|
583 |
+
"learning_rate": 2.7705128205128208e-06,
|
584 |
+
"loss": 0.5498,
|
585 |
+
"step": 1840
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.5098684210526315,
|
589 |
+
"learning_rate": 2.7448717948717953e-06,
|
590 |
+
"loss": 0.5437,
|
591 |
+
"step": 1860
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.5153508771929824,
|
595 |
+
"learning_rate": 2.7192307692307697e-06,
|
596 |
+
"loss": 0.5477,
|
597 |
+
"step": 1880
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.5208333333333334,
|
601 |
+
"learning_rate": 2.693589743589744e-06,
|
602 |
+
"loss": 0.5464,
|
603 |
+
"step": 1900
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.5263157894736842,
|
607 |
+
"learning_rate": 2.667948717948718e-06,
|
608 |
+
"loss": 0.5421,
|
609 |
+
"step": 1920
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.5317982456140351,
|
613 |
+
"learning_rate": 2.6423076923076924e-06,
|
614 |
+
"loss": 0.5451,
|
615 |
+
"step": 1940
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.5372807017543859,
|
619 |
+
"learning_rate": 2.616666666666667e-06,
|
620 |
+
"loss": 0.545,
|
621 |
+
"step": 1960
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.5427631578947368,
|
625 |
+
"learning_rate": 2.5910256410256414e-06,
|
626 |
+
"loss": 0.5416,
|
627 |
+
"step": 1980
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.5482456140350878,
|
631 |
+
"learning_rate": 2.565384615384616e-06,
|
632 |
+
"loss": 0.5378,
|
633 |
+
"step": 2000
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.5482456140350878,
|
637 |
+
"eval_loss": 0.5599762797355652,
|
638 |
+
"eval_runtime": 6.5788,
|
639 |
+
"eval_samples_per_second": 14.896,
|
640 |
+
"eval_steps_per_second": 1.976,
|
641 |
+
"step": 2000
|
642 |
+
}
|
643 |
+
],
|
644 |
+
"logging_steps": 20,
|
645 |
+
"max_steps": 4000,
|
646 |
+
"num_input_tokens_seen": 0,
|
647 |
+
"num_train_epochs": 2,
|
648 |
+
"save_steps": 500,
|
649 |
+
"total_flos": 4034749748215808.0,
|
650 |
+
"train_batch_size": 6,
|
651 |
+
"trial_name": null,
|
652 |
+
"trial_params": null
|
653 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1666fb8227e6013863ea69147019d309d9fc5bb193cba9a4f7ddb486b04d057
|
3 |
+
size 7224
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|