DARSAGENT commited on
Commit
22bda5d
·
verified ·
1 Parent(s): 6c98c56

Upload 34 files

Browse files
Files changed (34) hide show
  1. README.md +43 -3
  2. adapter_config.json +29 -0
  3. adapter_model.safetensors +3 -0
  4. global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. global_step2000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. global_step2000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. global_step2000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. global_step2000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. global_step2000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. global_step2000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. global_step2000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  13. global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  14. global_step2000/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  15. global_step2000/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  16. global_step2000/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  17. global_step2000/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  18. global_step2000/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  19. global_step2000/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  20. latest +1 -0
  21. rng_state_0.pth +3 -0
  22. rng_state_1.pth +3 -0
  23. rng_state_2.pth +3 -0
  24. rng_state_3.pth +3 -0
  25. rng_state_4.pth +3 -0
  26. rng_state_5.pth +3 -0
  27. rng_state_6.pth +3 -0
  28. rng_state_7.pth +3 -0
  29. special_tokens_map.json +27 -0
  30. tokenizer.json +0 -0
  31. tokenizer_config.json +223 -0
  32. trainer_state.json +653 -0
  33. training_args.bin +3 -0
  34. zero_to_fp32.py +604 -0
README.md CHANGED
@@ -1,3 +1,43 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Reviewer-14B
7
+
8
+ ## Model Details
9
+
10
+ ### Model Description
11
+
12
+ Reviewer-14B is a fine-tuned on [**DeepSeek-R1-Distill-Qwen-14B**](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B), optimized for selecting the best patch among multiple patches generated by our DARS agent while solving software engineering problems.
13
+
14
+ ### Model Sources
15
+
16
+ - **Repository:** [DARS-14B Repository](https://github.com/darsagent/DARS-Agent)
17
+ - **Paper:** ["DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal"](https://drive.google.com/file/d/1DMAZ-fkirC8uKl8819cOq9J3BQ4E7GXR/view?usp=drive_link)
18
+
19
+ ## How to Get Started with the Model
20
+ We use vLLM to deploy and infer the model. Please follow this tutorial [here]((https://docs.vllm.ai/en/latest/features/lora.html)) to use our LoRA weights with vLLM.
21
+
22
+ ## Training Details
23
+
24
+ ### Dataset
25
+
26
+ We use our [code review dataset](https://huggingface.co/datasets/AGENTDARS/generated-critiques) where each instance contains several git patches with critiques for each each patch. The model learns to generate critiques for multiple patches and select the best patch.
27
+
28
+ ### Training Procedure
29
+
30
+ | Hyperparameter | Value |
31
+ |----------------------|--------------------------------------------|
32
+ | Training regime | BF16 mixed precision |
33
+ | Optimizer | AdamW with cosine learning rate scheduler |
34
+ | LoRA Configuration | rank=8, alpha=32, dropout=0.1 |
35
+ | Batch Size | 48 |
36
+ | Learning Rate | 5e-6 |
37
+ | Sequence Length | 14K tokens |
38
+ | Fine-tuning Epochs | 1 |
39
+ | Compute Environment | DeepSpeed for memory-efficient distributed training |
40
+ | Compute Infrastructure | 8x H100 |
41
+
42
+ ## Results
43
+ Using this model as a reviewer with DARS trajectories generated using Claude 3.5 Sonnet V2 achieves 41.7% on SWE-Bench Lite.
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/home/dars/Qwen2.5-Coder/models/deepseek-14b/",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:157c15152bce8e797dfa01f6e466d29429fa6c83df9d2278c90f23d4b64ebae9
3
+ size 12608496
global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f8a8aad76113e84b54cf7d3c303a9b19125ac980c9f3bc26ff48c123355f41f
3
+ size 9440912
global_step2000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a92407e6c77b137b11809a3d6e3332ce01c6b44dfaf906f931ed6c37da568fb
3
+ size 9440912
global_step2000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3b8fad66457b17e20b005a16d3afbbe7284aa4191b7e41d4141687f8cebb058
3
+ size 9440912
global_step2000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8c9401c5e7a03c7880f43bb7a862a7b82063f8bfa147b366a529d8c44eb396e
3
+ size 9440912
global_step2000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e116b3abfbf167542dfb4cf1d05cf724f6e395d41ec236218a47882a54b3a1c1
3
+ size 9440912
global_step2000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5027c1fa90f40b1c4b9649b6e2a7a4f9e64ac55c5845b383e4fcbf78c499c4c8
3
+ size 9440912
global_step2000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2b4a4f5b2c0add41f7b9471da74ca7340ae888ae11ac5ab60be2bcc1b2857b9
3
+ size 9440912
global_step2000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f761562e37a8fb2fc45449f1efdb2898b0ed05d1a200f27e9d6d9ec426137e5
3
+ size 9440912
global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3be128cab192df1962334a33f6aaab5f0b2e506c62a5a20dd9ce97c8e7b5cb4
3
+ size 228398
global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:463d30b2fb4f41dafe42c4f4bb16db903a7fb192b056f3615bc84331c7d912c9
3
+ size 228398
global_step2000/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1969eb6fe91040b1904eeecfcf4cf5918ca5bde4906b9a453d30f3958a357b3
3
+ size 228398
global_step2000/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2315308eca50010ad291aa15be29979a4ff7517c31afaabc9965f892e6087863
3
+ size 228398
global_step2000/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:329e7389a9356d81428ca5cca5914e87c2c252fa101b8dac3b0fc86bf61dbf80
3
+ size 228398
global_step2000/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d108ae6ebfd137dd064635fe64a9abf2031a45ee99359cd357c5f5359a8d5305
3
+ size 228398
global_step2000/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6f10280fac8ea18a1b9716f90c4f21ebd1c17f3ec585294a20dee201700ff98
3
+ size 228398
global_step2000/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a5782a01e1ef7abdf7d083035263a60a8a479ba17ec06304cbc0426ba3f45fc
3
+ size 228398
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step2000
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e832b43e588d740d3f07dc0a44d65ab5ce8a3e06e28c23014052b0ba2d54ad21
3
+ size 15920
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d09ac95eeabbb6f44c57a6d15a7dab491542295abbb790c351f496fb5ad3319
3
+ size 15920
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53cb30810e690ff974d7d060095a4a9fb8587590bff41323eb6ee094f71c9647
3
+ size 15920
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06a8c290881b49fb26b7e3876ab4e6409d7506a8d64bd0d3b4e2479e976e5fae
3
+ size 15920
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e3bd90ae12b6576ffc76b434c14036de3a16c05721e44bcb23fc3b67101e66a
3
+ size 15920
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b59c3b71c7beadeea672b59b1f0f6c37896012b23b5763cd194fabf9fc01b41
3
+ size 15920
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76b9e1212c0a9b1c0778a79289f15e73c750fd9510950ae55fdd47b4db37c7a4
3
+ size 15920
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00814da94919dc36b80b7dc43dd9e7f49c59fd651eadb84f772bdf9598171438
3
+ size 15920
special_tokens_map.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|im_end|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<|im_start|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ }
17
+ ],
18
+ "bos_token": {
19
+ "content": "<|begin▁of▁sentence|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "eos_token": "<|im_end|>",
26
+ "pad_token": "<|endoftext|>"
27
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|end▁of▁sentence|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|User|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": false
20
+ },
21
+ "151645": {
22
+ "content": "<|Assistant|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": false
28
+ },
29
+ "151646": {
30
+ "content": "<|begin▁of▁sentence|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|EOT|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "151648": {
46
+ "content": "<think>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ },
53
+ "151649": {
54
+ "content": "</think>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": false
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<|im_end|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "151666": {
190
+ "content": "<|endoftext|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "151667": {
198
+ "content": "<|im_start|>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": true
204
+ }
205
+ },
206
+ "additional_special_tokens": [
207
+ "<|im_end|>",
208
+ "<|im_start|>"
209
+ ],
210
+ "bos_token": "<|begin▁of▁sentence|>",
211
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}",
212
+ "clean_up_tokenization_spaces": false,
213
+ "eos_token": "<|im_end|>",
214
+ "legacy": true,
215
+ "model_max_length": 14000,
216
+ "pad_token": "<|endoftext|>",
217
+ "padding_side": "right",
218
+ "sp_model_kwargs": {},
219
+ "tokenizer_class": "LlamaTokenizer",
220
+ "truncation": true,
221
+ "unk_token": null,
222
+ "use_default_system_prompt": false
223
+ }
trainer_state.json ADDED
@@ -0,0 +1,653 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.5482456140350878,
5
+ "eval_steps": 500,
6
+ "global_step": 2000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.005482456140350877,
13
+ "learning_rate": 3.2525749891599526e-06,
14
+ "loss": 1.627,
15
+ "step": 20
16
+ },
17
+ {
18
+ "epoch": 0.010964912280701754,
19
+ "learning_rate": 4.0051499783199055e-06,
20
+ "loss": 1.6081,
21
+ "step": 40
22
+ },
23
+ {
24
+ "epoch": 0.01644736842105263,
25
+ "learning_rate": 4.445378125959108e-06,
26
+ "loss": 1.587,
27
+ "step": 60
28
+ },
29
+ {
30
+ "epoch": 0.021929824561403508,
31
+ "learning_rate": 4.757724967479858e-06,
32
+ "loss": 1.5592,
33
+ "step": 80
34
+ },
35
+ {
36
+ "epoch": 0.027412280701754384,
37
+ "learning_rate": 4.9999999999999996e-06,
38
+ "loss": 1.5009,
39
+ "step": 100
40
+ },
41
+ {
42
+ "epoch": 0.03289473684210526,
43
+ "learning_rate": 4.9756410256410255e-06,
44
+ "loss": 1.4438,
45
+ "step": 120
46
+ },
47
+ {
48
+ "epoch": 0.03837719298245614,
49
+ "learning_rate": 4.95e-06,
50
+ "loss": 1.3777,
51
+ "step": 140
52
+ },
53
+ {
54
+ "epoch": 0.043859649122807015,
55
+ "learning_rate": 4.9243589743589745e-06,
56
+ "loss": 1.3215,
57
+ "step": 160
58
+ },
59
+ {
60
+ "epoch": 0.049342105263157895,
61
+ "learning_rate": 4.898717948717949e-06,
62
+ "loss": 1.267,
63
+ "step": 180
64
+ },
65
+ {
66
+ "epoch": 0.05482456140350877,
67
+ "learning_rate": 4.8730769230769235e-06,
68
+ "loss": 1.2095,
69
+ "step": 200
70
+ },
71
+ {
72
+ "epoch": 0.06030701754385965,
73
+ "learning_rate": 4.847435897435897e-06,
74
+ "loss": 1.1684,
75
+ "step": 220
76
+ },
77
+ {
78
+ "epoch": 0.06578947368421052,
79
+ "learning_rate": 4.821794871794872e-06,
80
+ "loss": 1.1054,
81
+ "step": 240
82
+ },
83
+ {
84
+ "epoch": 0.0712719298245614,
85
+ "learning_rate": 4.796153846153846e-06,
86
+ "loss": 1.0593,
87
+ "step": 260
88
+ },
89
+ {
90
+ "epoch": 0.07675438596491228,
91
+ "learning_rate": 4.770512820512821e-06,
92
+ "loss": 1.0069,
93
+ "step": 280
94
+ },
95
+ {
96
+ "epoch": 0.08223684210526316,
97
+ "learning_rate": 4.744871794871795e-06,
98
+ "loss": 0.9498,
99
+ "step": 300
100
+ },
101
+ {
102
+ "epoch": 0.08771929824561403,
103
+ "learning_rate": 4.71923076923077e-06,
104
+ "loss": 0.8949,
105
+ "step": 320
106
+ },
107
+ {
108
+ "epoch": 0.09320175438596491,
109
+ "learning_rate": 4.693589743589744e-06,
110
+ "loss": 0.8369,
111
+ "step": 340
112
+ },
113
+ {
114
+ "epoch": 0.09868421052631579,
115
+ "learning_rate": 4.667948717948718e-06,
116
+ "loss": 0.8047,
117
+ "step": 360
118
+ },
119
+ {
120
+ "epoch": 0.10416666666666667,
121
+ "learning_rate": 4.642307692307692e-06,
122
+ "loss": 0.781,
123
+ "step": 380
124
+ },
125
+ {
126
+ "epoch": 0.10964912280701754,
127
+ "learning_rate": 4.616666666666667e-06,
128
+ "loss": 0.7535,
129
+ "step": 400
130
+ },
131
+ {
132
+ "epoch": 0.11513157894736842,
133
+ "learning_rate": 4.591025641025641e-06,
134
+ "loss": 0.7332,
135
+ "step": 420
136
+ },
137
+ {
138
+ "epoch": 0.1206140350877193,
139
+ "learning_rate": 4.565384615384616e-06,
140
+ "loss": 0.7171,
141
+ "step": 440
142
+ },
143
+ {
144
+ "epoch": 0.12609649122807018,
145
+ "learning_rate": 4.53974358974359e-06,
146
+ "loss": 0.7074,
147
+ "step": 460
148
+ },
149
+ {
150
+ "epoch": 0.13157894736842105,
151
+ "learning_rate": 4.514102564102564e-06,
152
+ "loss": 0.6905,
153
+ "step": 480
154
+ },
155
+ {
156
+ "epoch": 0.13706140350877194,
157
+ "learning_rate": 4.4884615384615384e-06,
158
+ "loss": 0.6812,
159
+ "step": 500
160
+ },
161
+ {
162
+ "epoch": 0.13706140350877194,
163
+ "eval_loss": 0.6900227665901184,
164
+ "eval_runtime": 7.1872,
165
+ "eval_samples_per_second": 13.635,
166
+ "eval_steps_per_second": 1.809,
167
+ "step": 500
168
+ },
169
+ {
170
+ "epoch": 0.1425438596491228,
171
+ "learning_rate": 4.462820512820513e-06,
172
+ "loss": 0.6753,
173
+ "step": 520
174
+ },
175
+ {
176
+ "epoch": 0.14802631578947367,
177
+ "learning_rate": 4.437179487179487e-06,
178
+ "loss": 0.6637,
179
+ "step": 540
180
+ },
181
+ {
182
+ "epoch": 0.15350877192982457,
183
+ "learning_rate": 4.411538461538462e-06,
184
+ "loss": 0.6615,
185
+ "step": 560
186
+ },
187
+ {
188
+ "epoch": 0.15899122807017543,
189
+ "learning_rate": 4.385897435897436e-06,
190
+ "loss": 0.6547,
191
+ "step": 580
192
+ },
193
+ {
194
+ "epoch": 0.16447368421052633,
195
+ "learning_rate": 4.36025641025641e-06,
196
+ "loss": 0.6487,
197
+ "step": 600
198
+ },
199
+ {
200
+ "epoch": 0.1699561403508772,
201
+ "learning_rate": 4.3346153846153846e-06,
202
+ "loss": 0.6441,
203
+ "step": 620
204
+ },
205
+ {
206
+ "epoch": 0.17543859649122806,
207
+ "learning_rate": 4.308974358974359e-06,
208
+ "loss": 0.6358,
209
+ "step": 640
210
+ },
211
+ {
212
+ "epoch": 0.18092105263157895,
213
+ "learning_rate": 4.2833333333333335e-06,
214
+ "loss": 0.636,
215
+ "step": 660
216
+ },
217
+ {
218
+ "epoch": 0.18640350877192982,
219
+ "learning_rate": 4.257692307692308e-06,
220
+ "loss": 0.6326,
221
+ "step": 680
222
+ },
223
+ {
224
+ "epoch": 0.19188596491228072,
225
+ "learning_rate": 4.2320512820512825e-06,
226
+ "loss": 0.6246,
227
+ "step": 700
228
+ },
229
+ {
230
+ "epoch": 0.19736842105263158,
231
+ "learning_rate": 4.206410256410256e-06,
232
+ "loss": 0.6237,
233
+ "step": 720
234
+ },
235
+ {
236
+ "epoch": 0.20285087719298245,
237
+ "learning_rate": 4.180769230769231e-06,
238
+ "loss": 0.6203,
239
+ "step": 740
240
+ },
241
+ {
242
+ "epoch": 0.20833333333333334,
243
+ "learning_rate": 4.155128205128205e-06,
244
+ "loss": 0.6164,
245
+ "step": 760
246
+ },
247
+ {
248
+ "epoch": 0.2138157894736842,
249
+ "learning_rate": 4.12948717948718e-06,
250
+ "loss": 0.6118,
251
+ "step": 780
252
+ },
253
+ {
254
+ "epoch": 0.21929824561403508,
255
+ "learning_rate": 4.103846153846154e-06,
256
+ "loss": 0.6101,
257
+ "step": 800
258
+ },
259
+ {
260
+ "epoch": 0.22478070175438597,
261
+ "learning_rate": 4.078205128205129e-06,
262
+ "loss": 0.6092,
263
+ "step": 820
264
+ },
265
+ {
266
+ "epoch": 0.23026315789473684,
267
+ "learning_rate": 4.052564102564102e-06,
268
+ "loss": 0.6039,
269
+ "step": 840
270
+ },
271
+ {
272
+ "epoch": 0.23574561403508773,
273
+ "learning_rate": 4.026923076923077e-06,
274
+ "loss": 0.5989,
275
+ "step": 860
276
+ },
277
+ {
278
+ "epoch": 0.2412280701754386,
279
+ "learning_rate": 4.001282051282051e-06,
280
+ "loss": 0.5979,
281
+ "step": 880
282
+ },
283
+ {
284
+ "epoch": 0.24671052631578946,
285
+ "learning_rate": 3.975641025641026e-06,
286
+ "loss": 0.5965,
287
+ "step": 900
288
+ },
289
+ {
290
+ "epoch": 0.25219298245614036,
291
+ "learning_rate": 3.95e-06,
292
+ "loss": 0.5969,
293
+ "step": 920
294
+ },
295
+ {
296
+ "epoch": 0.2576754385964912,
297
+ "learning_rate": 3.924358974358975e-06,
298
+ "loss": 0.5902,
299
+ "step": 940
300
+ },
301
+ {
302
+ "epoch": 0.2631578947368421,
303
+ "learning_rate": 3.8987179487179484e-06,
304
+ "loss": 0.5909,
305
+ "step": 960
306
+ },
307
+ {
308
+ "epoch": 0.26864035087719296,
309
+ "learning_rate": 3.873076923076923e-06,
310
+ "loss": 0.5914,
311
+ "step": 980
312
+ },
313
+ {
314
+ "epoch": 0.2741228070175439,
315
+ "learning_rate": 3.8474358974358974e-06,
316
+ "loss": 0.589,
317
+ "step": 1000
318
+ },
319
+ {
320
+ "epoch": 0.2741228070175439,
321
+ "eval_loss": 0.5962496399879456,
322
+ "eval_runtime": 6.5411,
323
+ "eval_samples_per_second": 14.982,
324
+ "eval_steps_per_second": 1.987,
325
+ "step": 1000
326
+ },
327
+ {
328
+ "epoch": 0.27960526315789475,
329
+ "learning_rate": 3.821794871794872e-06,
330
+ "loss": 0.5844,
331
+ "step": 1020
332
+ },
333
+ {
334
+ "epoch": 0.2850877192982456,
335
+ "learning_rate": 3.7961538461538464e-06,
336
+ "loss": 0.5819,
337
+ "step": 1040
338
+ },
339
+ {
340
+ "epoch": 0.2905701754385965,
341
+ "learning_rate": 3.770512820512821e-06,
342
+ "loss": 0.5828,
343
+ "step": 1060
344
+ },
345
+ {
346
+ "epoch": 0.29605263157894735,
347
+ "learning_rate": 3.744871794871795e-06,
348
+ "loss": 0.5816,
349
+ "step": 1080
350
+ },
351
+ {
352
+ "epoch": 0.30153508771929827,
353
+ "learning_rate": 3.7192307692307695e-06,
354
+ "loss": 0.5773,
355
+ "step": 1100
356
+ },
357
+ {
358
+ "epoch": 0.30701754385964913,
359
+ "learning_rate": 3.693589743589744e-06,
360
+ "loss": 0.5782,
361
+ "step": 1120
362
+ },
363
+ {
364
+ "epoch": 0.3125,
365
+ "learning_rate": 3.6679487179487185e-06,
366
+ "loss": 0.5774,
367
+ "step": 1140
368
+ },
369
+ {
370
+ "epoch": 0.31798245614035087,
371
+ "learning_rate": 3.642307692307693e-06,
372
+ "loss": 0.5733,
373
+ "step": 1160
374
+ },
375
+ {
376
+ "epoch": 0.32346491228070173,
377
+ "learning_rate": 3.616666666666667e-06,
378
+ "loss": 0.5722,
379
+ "step": 1180
380
+ },
381
+ {
382
+ "epoch": 0.32894736842105265,
383
+ "learning_rate": 3.591025641025641e-06,
384
+ "loss": 0.569,
385
+ "step": 1200
386
+ },
387
+ {
388
+ "epoch": 0.3344298245614035,
389
+ "learning_rate": 3.5653846153846156e-06,
390
+ "loss": 0.5699,
391
+ "step": 1220
392
+ },
393
+ {
394
+ "epoch": 0.3399122807017544,
395
+ "learning_rate": 3.53974358974359e-06,
396
+ "loss": 0.5691,
397
+ "step": 1240
398
+ },
399
+ {
400
+ "epoch": 0.34539473684210525,
401
+ "learning_rate": 3.5141025641025646e-06,
402
+ "loss": 0.5706,
403
+ "step": 1260
404
+ },
405
+ {
406
+ "epoch": 0.3508771929824561,
407
+ "learning_rate": 3.488461538461539e-06,
408
+ "loss": 0.565,
409
+ "step": 1280
410
+ },
411
+ {
412
+ "epoch": 0.35635964912280704,
413
+ "learning_rate": 3.462820512820513e-06,
414
+ "loss": 0.5652,
415
+ "step": 1300
416
+ },
417
+ {
418
+ "epoch": 0.3618421052631579,
419
+ "learning_rate": 3.4371794871794873e-06,
420
+ "loss": 0.5631,
421
+ "step": 1320
422
+ },
423
+ {
424
+ "epoch": 0.3673245614035088,
425
+ "learning_rate": 3.4115384615384617e-06,
426
+ "loss": 0.5652,
427
+ "step": 1340
428
+ },
429
+ {
430
+ "epoch": 0.37280701754385964,
431
+ "learning_rate": 3.3858974358974362e-06,
432
+ "loss": 0.5627,
433
+ "step": 1360
434
+ },
435
+ {
436
+ "epoch": 0.3782894736842105,
437
+ "learning_rate": 3.3602564102564107e-06,
438
+ "loss": 0.5662,
439
+ "step": 1380
440
+ },
441
+ {
442
+ "epoch": 0.38377192982456143,
443
+ "learning_rate": 3.3346153846153852e-06,
444
+ "loss": 0.5606,
445
+ "step": 1400
446
+ },
447
+ {
448
+ "epoch": 0.3892543859649123,
449
+ "learning_rate": 3.3089743589743593e-06,
450
+ "loss": 0.5616,
451
+ "step": 1420
452
+ },
453
+ {
454
+ "epoch": 0.39473684210526316,
455
+ "learning_rate": 3.2833333333333334e-06,
456
+ "loss": 0.5624,
457
+ "step": 1440
458
+ },
459
+ {
460
+ "epoch": 0.40021929824561403,
461
+ "learning_rate": 3.257692307692308e-06,
462
+ "loss": 0.5578,
463
+ "step": 1460
464
+ },
465
+ {
466
+ "epoch": 0.4057017543859649,
467
+ "learning_rate": 3.2320512820512824e-06,
468
+ "loss": 0.5577,
469
+ "step": 1480
470
+ },
471
+ {
472
+ "epoch": 0.41118421052631576,
473
+ "learning_rate": 3.206410256410257e-06,
474
+ "loss": 0.5586,
475
+ "step": 1500
476
+ },
477
+ {
478
+ "epoch": 0.41118421052631576,
479
+ "eval_loss": 0.5718954801559448,
480
+ "eval_runtime": 6.5348,
481
+ "eval_samples_per_second": 14.997,
482
+ "eval_steps_per_second": 1.989,
483
+ "step": 1500
484
+ },
485
+ {
486
+ "epoch": 0.4166666666666667,
487
+ "learning_rate": 3.1807692307692314e-06,
488
+ "loss": 0.5603,
489
+ "step": 1520
490
+ },
491
+ {
492
+ "epoch": 0.42214912280701755,
493
+ "learning_rate": 3.1551282051282054e-06,
494
+ "loss": 0.5567,
495
+ "step": 1540
496
+ },
497
+ {
498
+ "epoch": 0.4276315789473684,
499
+ "learning_rate": 3.1294871794871795e-06,
500
+ "loss": 0.5565,
501
+ "step": 1560
502
+ },
503
+ {
504
+ "epoch": 0.4331140350877193,
505
+ "learning_rate": 3.103846153846154e-06,
506
+ "loss": 0.552,
507
+ "step": 1580
508
+ },
509
+ {
510
+ "epoch": 0.43859649122807015,
511
+ "learning_rate": 3.0782051282051285e-06,
512
+ "loss": 0.5553,
513
+ "step": 1600
514
+ },
515
+ {
516
+ "epoch": 0.4440789473684211,
517
+ "learning_rate": 3.052564102564103e-06,
518
+ "loss": 0.5528,
519
+ "step": 1620
520
+ },
521
+ {
522
+ "epoch": 0.44956140350877194,
523
+ "learning_rate": 3.0269230769230775e-06,
524
+ "loss": 0.5446,
525
+ "step": 1640
526
+ },
527
+ {
528
+ "epoch": 0.4550438596491228,
529
+ "learning_rate": 3.0012820512820516e-06,
530
+ "loss": 0.5525,
531
+ "step": 1660
532
+ },
533
+ {
534
+ "epoch": 0.4605263157894737,
535
+ "learning_rate": 2.9756410256410256e-06,
536
+ "loss": 0.5504,
537
+ "step": 1680
538
+ },
539
+ {
540
+ "epoch": 0.46600877192982454,
541
+ "learning_rate": 2.95e-06,
542
+ "loss": 0.5528,
543
+ "step": 1700
544
+ },
545
+ {
546
+ "epoch": 0.47149122807017546,
547
+ "learning_rate": 2.9243589743589746e-06,
548
+ "loss": 0.5502,
549
+ "step": 1720
550
+ },
551
+ {
552
+ "epoch": 0.4769736842105263,
553
+ "learning_rate": 2.898717948717949e-06,
554
+ "loss": 0.5512,
555
+ "step": 1740
556
+ },
557
+ {
558
+ "epoch": 0.4824561403508772,
559
+ "learning_rate": 2.8730769230769236e-06,
560
+ "loss": 0.5476,
561
+ "step": 1760
562
+ },
563
+ {
564
+ "epoch": 0.48793859649122806,
565
+ "learning_rate": 2.8474358974358977e-06,
566
+ "loss": 0.5489,
567
+ "step": 1780
568
+ },
569
+ {
570
+ "epoch": 0.4934210526315789,
571
+ "learning_rate": 2.8217948717948718e-06,
572
+ "loss": 0.5522,
573
+ "step": 1800
574
+ },
575
+ {
576
+ "epoch": 0.49890350877192985,
577
+ "learning_rate": 2.7961538461538463e-06,
578
+ "loss": 0.5463,
579
+ "step": 1820
580
+ },
581
+ {
582
+ "epoch": 0.5043859649122807,
583
+ "learning_rate": 2.7705128205128208e-06,
584
+ "loss": 0.5498,
585
+ "step": 1840
586
+ },
587
+ {
588
+ "epoch": 0.5098684210526315,
589
+ "learning_rate": 2.7448717948717953e-06,
590
+ "loss": 0.5437,
591
+ "step": 1860
592
+ },
593
+ {
594
+ "epoch": 0.5153508771929824,
595
+ "learning_rate": 2.7192307692307697e-06,
596
+ "loss": 0.5477,
597
+ "step": 1880
598
+ },
599
+ {
600
+ "epoch": 0.5208333333333334,
601
+ "learning_rate": 2.693589743589744e-06,
602
+ "loss": 0.5464,
603
+ "step": 1900
604
+ },
605
+ {
606
+ "epoch": 0.5263157894736842,
607
+ "learning_rate": 2.667948717948718e-06,
608
+ "loss": 0.5421,
609
+ "step": 1920
610
+ },
611
+ {
612
+ "epoch": 0.5317982456140351,
613
+ "learning_rate": 2.6423076923076924e-06,
614
+ "loss": 0.5451,
615
+ "step": 1940
616
+ },
617
+ {
618
+ "epoch": 0.5372807017543859,
619
+ "learning_rate": 2.616666666666667e-06,
620
+ "loss": 0.545,
621
+ "step": 1960
622
+ },
623
+ {
624
+ "epoch": 0.5427631578947368,
625
+ "learning_rate": 2.5910256410256414e-06,
626
+ "loss": 0.5416,
627
+ "step": 1980
628
+ },
629
+ {
630
+ "epoch": 0.5482456140350878,
631
+ "learning_rate": 2.565384615384616e-06,
632
+ "loss": 0.5378,
633
+ "step": 2000
634
+ },
635
+ {
636
+ "epoch": 0.5482456140350878,
637
+ "eval_loss": 0.5599762797355652,
638
+ "eval_runtime": 6.5788,
639
+ "eval_samples_per_second": 14.896,
640
+ "eval_steps_per_second": 1.976,
641
+ "step": 2000
642
+ }
643
+ ],
644
+ "logging_steps": 20,
645
+ "max_steps": 4000,
646
+ "num_input_tokens_seen": 0,
647
+ "num_train_epochs": 2,
648
+ "save_steps": 500,
649
+ "total_flos": 4034749748215808.0,
650
+ "train_batch_size": 6,
651
+ "trial_name": null,
652
+ "trial_params": null
653
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1666fb8227e6013863ea69147019d309d9fc5bb193cba9a4f7ddb486b04d057
3
+ size 7224
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)