update Readme.md
Browse files
README.md
CHANGED
@@ -2,205 +2,120 @@
|
|
2 |
base_model: VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
|
3 |
library_name: peft
|
4 |
---
|
5 |
-
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
- **
|
33 |
-
- **
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
|
64 |
### Recommendations
|
|
|
|
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
69 |
|
70 |
-
|
|
|
71 |
|
72 |
-
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
#### Testing Data
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
## Training procedure
|
201 |
-
|
202 |
|
203 |
-
|
|
|
|
|
|
|
204 |
|
|
|
|
|
205 |
|
206 |
-
|
|
|
2 |
base_model: VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
|
3 |
library_name: peft
|
4 |
---
|
5 |
+
# Model Card for VAGOsolutions-Llama-3-SauerkrautLM-8b-Instruct-openassistant-guanaco
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
## Model Details
|
8 |
|
9 |
### Model Description
|
10 |
+
This model is a fine-tuned version of **Llama-3-SauerkrautLM-8b**, optimized for **causal language modeling (CAUSAL_LM)** using **LoRA (Low-Rank Adaptation)**. The fine-tuning process was carried out under **Intel Gaudi access** using Habana Gaudi AI processors, leveraging `optimum-habana` for hardware acceleration.
|
11 |
|
12 |
+
- **Developed by:** AHAMED-27
|
13 |
+
- **Funded by:** [More Information Needed]
|
14 |
+
- **Shared by:** AHAMED-27
|
15 |
+
- **Model type:** Causal Language Model (CAUSAL_LM)
|
16 |
+
- **Language(s):** English
|
|
|
|
|
|
|
|
|
17 |
- **License:** [More Information Needed]
|
18 |
+
- **Finetuned from model:** [VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct)
|
|
|
|
|
19 |
|
20 |
+
### Model Sources
|
21 |
+
- **Repository:** [AHAMED-27/VAGOsolutions-Llama-3-SauerkrautLM-8b-Instruct-openassistant-guanaco](https://huggingface.co/AHAMED-27/VAGOsolutions-Llama-3-SauerkrautLM-8b-Instruct-openassistant-guanaco)
|
22 |
+
- **Paper:** [More Information Needed]
|
23 |
+
- **Demo:** [More Information Needed]
|
|
|
24 |
|
25 |
## Uses
|
26 |
|
|
|
|
|
27 |
### Direct Use
|
28 |
+
This model is designed for natural language generation tasks, such as:
|
29 |
+
- Text completion
|
30 |
+
- Conversational AI
|
31 |
+
- Story generation
|
32 |
+
- Summarization
|
33 |
+
|
34 |
+
### Downstream Use
|
35 |
+
The model can be fine-tuned further for specific NLP applications such as:
|
36 |
+
- Chatbots
|
37 |
+
- Code generation
|
38 |
+
- Sentiment analysis
|
39 |
+
- Question answering
|
40 |
|
41 |
### Out-of-Scope Use
|
42 |
+
- The model is not intended for real-time decision-making applications where accuracy is critical.
|
43 |
+
- Avoid using it for generating misinformation or harmful content.
|
|
|
|
|
44 |
|
45 |
## Bias, Risks, and Limitations
|
46 |
+
### Known Risks
|
47 |
+
- The model may generate biased or incorrect responses as it is fine-tuned on publicly available datasets.
|
48 |
+
- It may not perform well on low-resource languages or domain-specific tasks without additional fine-tuning.
|
|
|
49 |
|
50 |
### Recommendations
|
51 |
+
- Users should verify the generated content before deploying it in production.
|
52 |
+
- Ethical considerations should be taken into account while using this model.
|
53 |
|
54 |
+
## How to Get Started with the Model
|
55 |
|
56 |
+
Use the code below to load and generate text using the model:
|
57 |
|
58 |
+
```python
|
59 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
60 |
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained("AHAMED-27/VAGOsolutions-Llama-3-SauerkrautLM-8b-Instruct-openassistant-guanaco")
|
62 |
+
model = AutoModelForCausalLM.from_pretrained("AHAMED-27/VAGOsolutions-Llama-3-SauerkrautLM-8b-Instruct-openassistant-guanaco")
|
63 |
|
64 |
+
input_text = "Explain the benefits of using LoRA for fine-tuning large language models."
|
65 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
66 |
+
output = model.generate(**inputs)
|
67 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
68 |
+
```
|
69 |
|
70 |
## Training Details
|
71 |
|
72 |
### Training Data
|
73 |
+
The model was fine-tuned on the **openassistant-guanaco** dataset.
|
|
|
|
|
|
|
74 |
|
75 |
### Training Procedure
|
76 |
+
#### Preprocessing
|
77 |
+
- Tokenization was performed using the `AutoTokenizer` from the `transformers` library.
|
78 |
+
- LoRA adaptation was applied to the attention projection layers (`q_proj`, `v_proj`).
|
|
|
|
|
|
|
|
|
79 |
|
80 |
#### Training Hyperparameters
|
81 |
+
- **Training Regime:** BF16 Mixed Precision
|
82 |
+
- **Epochs:** 3
|
83 |
+
- **Batch Size:** 16 per device
|
84 |
+
- **Learning Rate:** 1e-4
|
85 |
+
- **Optimizer:** Adam
|
86 |
+
- **Scheduler:** Constant LR
|
87 |
+
- **LoRA Rank (r):** 8
|
88 |
+
- **LoRA Alpha:** 16
|
89 |
+
- **LoRA Dropout:** 0.05
|
90 |
+
|
91 |
+
#### Speeds, Sizes, Times
|
92 |
+
- **Training Runtime:** 1086.32 seconds
|
93 |
+
- **Training Samples per Second:** 16.197
|
94 |
+
- **Training Steps per Second:** 1.015
|
95 |
+
- **Total Available Memory:** 94.62 GB
|
96 |
+
- **Max Memory Allocated:** 92.66 GB
|
97 |
+
- **Memory Currently Allocated:** 67.67 GB
|
98 |
|
99 |
## Evaluation
|
100 |
|
|
|
|
|
101 |
### Testing Data, Factors & Metrics
|
|
|
102 |
#### Testing Data
|
103 |
+
- The model was evaluated on a held-out validation set from the **openassistant-guanaco** dataset.
|
104 |
|
105 |
+
#### Evaluation Metrics
|
106 |
+
- **Evaluation Accuracy:** 70.18%
|
107 |
+
- **Evaluation Loss:** 1.4535
|
108 |
+
- **Perplexity:** 4.28
|
109 |
+
- **Evaluation Runtime:** 9.54 seconds
|
110 |
+
- **Evaluation Samples per Second:** 35.85
|
111 |
+
- **Evaluation Steps per Second:** 4.513
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
## Software Dependencies
|
114 |
+
- **Transformers Version:** 4.38.2
|
115 |
+
- **Optimum-Habana Version:** 1.24.0
|
116 |
+
- **Intel Gaudi SynapseAI Toolkit**
|
117 |
|
118 |
+
## Acknowledgments
|
119 |
+
This fine-tuning process was completed using **Intel Gaudi hardware**, enabling optimized performance with reduced training time. Special thanks to the **Intel Habana team** for their work on Gaudi AI processors.
|
120 |
|
121 |
+
For more details, visit [Habana Labs](https://habana.ai/).
|