AHAMED-27 commited on
Commit
d7a9777
·
verified ·
1 Parent(s): e57ac59

update Readme.md

Browse files
Files changed (1) hide show
  1. README.md +78 -163
README.md CHANGED
@@ -2,205 +2,120 @@
2
  base_model: VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
3
  library_name: peft
4
  ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
  - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
 
 
51
 
52
  ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
 
73
 
74
- [More Information Needed]
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
  #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
 
 
 
 
 
 
 
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
-
109
  #### Testing Data
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ## Training procedure
201
-
202
 
203
- ### Framework versions
 
 
 
204
 
 
 
205
 
206
- - PEFT 0.6.2
 
2
  base_model: VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
3
  library_name: peft
4
  ---
5
+ # Model Card for VAGOsolutions-Llama-3-SauerkrautLM-8b-Instruct-openassistant-guanaco
 
 
 
 
 
6
 
7
  ## Model Details
8
 
9
  ### Model Description
10
+ This model is a fine-tuned version of **Llama-3-SauerkrautLM-8b**, optimized for **causal language modeling (CAUSAL_LM)** using **LoRA (Low-Rank Adaptation)**. The fine-tuning process was carried out under **Intel Gaudi access** using Habana Gaudi AI processors, leveraging `optimum-habana` for hardware acceleration.
11
 
12
+ - **Developed by:** AHAMED-27
13
+ - **Funded by:** [More Information Needed]
14
+ - **Shared by:** AHAMED-27
15
+ - **Model type:** Causal Language Model (CAUSAL_LM)
16
+ - **Language(s):** English
 
 
 
 
17
  - **License:** [More Information Needed]
18
+ - **Finetuned from model:** [VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct)
 
 
19
 
20
+ ### Model Sources
21
+ - **Repository:** [AHAMED-27/VAGOsolutions-Llama-3-SauerkrautLM-8b-Instruct-openassistant-guanaco](https://huggingface.co/AHAMED-27/VAGOsolutions-Llama-3-SauerkrautLM-8b-Instruct-openassistant-guanaco)
22
+ - **Paper:** [More Information Needed]
23
+ - **Demo:** [More Information Needed]
 
24
 
25
  ## Uses
26
 
 
 
27
  ### Direct Use
28
+ This model is designed for natural language generation tasks, such as:
29
+ - Text completion
30
+ - Conversational AI
31
+ - Story generation
32
+ - Summarization
33
+
34
+ ### Downstream Use
35
+ The model can be fine-tuned further for specific NLP applications such as:
36
+ - Chatbots
37
+ - Code generation
38
+ - Sentiment analysis
39
+ - Question answering
40
 
41
  ### Out-of-Scope Use
42
+ - The model is not intended for real-time decision-making applications where accuracy is critical.
43
+ - Avoid using it for generating misinformation or harmful content.
 
 
44
 
45
  ## Bias, Risks, and Limitations
46
+ ### Known Risks
47
+ - The model may generate biased or incorrect responses as it is fine-tuned on publicly available datasets.
48
+ - It may not perform well on low-resource languages or domain-specific tasks without additional fine-tuning.
 
49
 
50
  ### Recommendations
51
+ - Users should verify the generated content before deploying it in production.
52
+ - Ethical considerations should be taken into account while using this model.
53
 
54
+ ## How to Get Started with the Model
55
 
56
+ Use the code below to load and generate text using the model:
57
 
58
+ ```python
59
+ from transformers import AutoModelForCausalLM, AutoTokenizer
60
 
61
+ tokenizer = AutoTokenizer.from_pretrained("AHAMED-27/VAGOsolutions-Llama-3-SauerkrautLM-8b-Instruct-openassistant-guanaco")
62
+ model = AutoModelForCausalLM.from_pretrained("AHAMED-27/VAGOsolutions-Llama-3-SauerkrautLM-8b-Instruct-openassistant-guanaco")
63
 
64
+ input_text = "Explain the benefits of using LoRA for fine-tuning large language models."
65
+ inputs = tokenizer(input_text, return_tensors="pt")
66
+ output = model.generate(**inputs)
67
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
68
+ ```
69
 
70
  ## Training Details
71
 
72
  ### Training Data
73
+ The model was fine-tuned on the **openassistant-guanaco** dataset.
 
 
 
74
 
75
  ### Training Procedure
76
+ #### Preprocessing
77
+ - Tokenization was performed using the `AutoTokenizer` from the `transformers` library.
78
+ - LoRA adaptation was applied to the attention projection layers (`q_proj`, `v_proj`).
 
 
 
 
79
 
80
  #### Training Hyperparameters
81
+ - **Training Regime:** BF16 Mixed Precision
82
+ - **Epochs:** 3
83
+ - **Batch Size:** 16 per device
84
+ - **Learning Rate:** 1e-4
85
+ - **Optimizer:** Adam
86
+ - **Scheduler:** Constant LR
87
+ - **LoRA Rank (r):** 8
88
+ - **LoRA Alpha:** 16
89
+ - **LoRA Dropout:** 0.05
90
+
91
+ #### Speeds, Sizes, Times
92
+ - **Training Runtime:** 1086.32 seconds
93
+ - **Training Samples per Second:** 16.197
94
+ - **Training Steps per Second:** 1.015
95
+ - **Total Available Memory:** 94.62 GB
96
+ - **Max Memory Allocated:** 92.66 GB
97
+ - **Memory Currently Allocated:** 67.67 GB
98
 
99
  ## Evaluation
100
 
 
 
101
  ### Testing Data, Factors & Metrics
 
102
  #### Testing Data
103
+ - The model was evaluated on a held-out validation set from the **openassistant-guanaco** dataset.
104
 
105
+ #### Evaluation Metrics
106
+ - **Evaluation Accuracy:** 70.18%
107
+ - **Evaluation Loss:** 1.4535
108
+ - **Perplexity:** 4.28
109
+ - **Evaluation Runtime:** 9.54 seconds
110
+ - **Evaluation Samples per Second:** 35.85
111
+ - **Evaluation Steps per Second:** 4.513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
 
113
+ ## Software Dependencies
114
+ - **Transformers Version:** 4.38.2
115
+ - **Optimum-Habana Version:** 1.24.0
116
+ - **Intel Gaudi SynapseAI Toolkit**
117
 
118
+ ## Acknowledgments
119
+ This fine-tuning process was completed using **Intel Gaudi hardware**, enabling optimized performance with reduced training time. Special thanks to the **Intel Habana team** for their work on Gaudi AI processors.
120
 
121
+ For more details, visit [Habana Labs](https://habana.ai/).