怀羽
commited on
Commit
·
41f2d92
1
Parent(s):
9858d70
update repo
Browse files- README.md +89 -22
- marco_mt_label.png +0 -0
README.md
CHANGED
|
@@ -26,10 +26,28 @@ This repository contains the system for Algharb, the submission from the Marco T
|
|
| 26 |
|
| 27 |
The Algharb system is a large translation model built based on the Qwen3-14B foundation. It is designed for high-quality translation across 13 diverse language directions and demonstrates state-of-the-art performance. Our approach is centered on a multi-stage refinement pipeline that systematically enhances translation fluency and faithfulness.
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
## Usage
|
| 30 |
|
| 31 |
The model expects a specific instruction format for translation. The following example demonstrates how to construct the prompt and perform generation using the vllm library for efficient inference.
|
| 32 |
|
|
|
|
| 33 |
### 1. Dependencies
|
| 34 |
|
| 35 |
First, ensure you have the necessary libraries installed:
|
|
@@ -51,33 +69,85 @@ Here is a complete Python example:
|
|
| 51 |
```python
|
| 52 |
from vllm import LLM, SamplingParams
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
model_path = "path/to/your/algharb_model"
|
| 56 |
llm = LLM(model=model_path)
|
| 57 |
|
| 58 |
-
# --- 2. Define Source Text and Target Language ---
|
| 59 |
source_text = "This paper presents the Algharb system, our submission to the WMT 2025."
|
| 60 |
-
source_lang_code = "
|
| 61 |
-
target_lang_code = "
|
| 62 |
|
| 63 |
-
# Helper dictionary to map language codes to full names for the prompt
|
| 64 |
lang_name_map = {
|
| 65 |
-
"
|
| 66 |
-
"
|
| 67 |
-
"
|
| 68 |
-
"
|
| 69 |
-
"
|
| 70 |
-
"
|
| 71 |
-
"
|
| 72 |
-
"
|
| 73 |
-
"
|
| 74 |
-
"
|
| 75 |
-
"
|
|
|
|
| 76 |
}
|
| 77 |
|
| 78 |
target_language_name = lang_name_map.get(target_lang_code, "the target language")
|
| 79 |
|
| 80 |
-
|
| 81 |
prompt = (
|
| 82 |
f"Human: Please translate the following text into {target_language_name}: \n"
|
| 83 |
f"{source_text}<|im_end|>\n"
|
|
@@ -89,15 +159,13 @@ print("Formatted Prompt:\n", prompt)
|
|
| 89 |
|
| 90 |
sampling_params = SamplingParams(
|
| 91 |
n=100,
|
| 92 |
-
temperature=1
|
| 93 |
-
top_p=1
|
| 94 |
max_tokens=512
|
| 95 |
)
|
| 96 |
|
| 97 |
-
# --- 5. Generate Translations ---
|
| 98 |
outputs = llm.generate(prompts_to_generate, sampling_params)
|
| 99 |
|
| 100 |
-
# --- 6. Process and Print Results ---
|
| 101 |
# The 'outputs' list contains one item for each prompt.
|
| 102 |
for output in outputs:
|
| 103 |
prompt_used = output.prompt
|
|
@@ -109,7 +177,6 @@ for output in outputs:
|
|
| 109 |
print(f"Candidate {i+1}: {generated_text}")
|
| 110 |
```
|
| 111 |
|
| 112 |
-
### 3. Apply MBR decoding
|
| 113 |
```bash
|
| 114 |
comet-mbr -s src.txt -t mbr_sample_100.txt -o mbr_trans.txt --num_samples 100 --gpus 1 --qe_model Unbabel/wmt22-cometkiwi-da
|
| 115 |
```
|
|
|
|
| 26 |
|
| 27 |
The Algharb system is a large translation model built based on the Qwen3-14B foundation. It is designed for high-quality translation across 13 diverse language directions and demonstrates state-of-the-art performance. Our approach is centered on a multi-stage refinement pipeline that systematically enhances translation fluency and faithfulness.
|
| 28 |
|
| 29 |
+
Supported language pairs:
|
| 30 |
+
| Languages pair | Chinese Names |
|
| 31 |
+
|---|---|
|
| 32 |
+
| en2zh | 英语到中文 |
|
| 33 |
+
| en2ja | 英语到日语 |
|
| 34 |
+
| en2ko | 英语到韩语 |
|
| 35 |
+
| en2ar | 英语到阿拉伯语 |
|
| 36 |
+
| en2et | 英语到爱沙尼亚语 |
|
| 37 |
+
| en2sr_latin | 英语到塞尔维亚语(拉丁化) |
|
| 38 |
+
| en2ru | 英语到俄语 |
|
| 39 |
+
| en2uk | 英语到乌克兰语 |
|
| 40 |
+
| en2cs | 英语到捷克语 |
|
| 41 |
+
| en2bho | 英语到博杰普尔语 |
|
| 42 |
+
| cs2uk | 捷克语到乌克兰语 |
|
| 43 |
+
| cs2de | 捷克语到德语 |
|
| 44 |
+
| ja2zh | 日语到中文 |
|
| 45 |
+
|
| 46 |
## Usage
|
| 47 |
|
| 48 |
The model expects a specific instruction format for translation. The following example demonstrates how to construct the prompt and perform generation using the vllm library for efficient inference.
|
| 49 |
|
| 50 |
+
|
| 51 |
### 1. Dependencies
|
| 52 |
|
| 53 |
First, ensure you have the necessary libraries installed:
|
|
|
|
| 69 |
```python
|
| 70 |
from vllm import LLM, SamplingParams
|
| 71 |
|
| 72 |
+
|
| 73 |
+
model_path = "path/to/your/algharb_model"
|
| 74 |
+
llm = LLM(model=model_path)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
source_text = "This paper presents the Algharb system, our submission to the WMT 2025."
|
| 78 |
+
source_lang_code = "en"
|
| 79 |
+
target_lang_code = "zh"
|
| 80 |
+
|
| 81 |
+
lang_name_map = {
|
| 82 |
+
"en": "english"
|
| 83 |
+
"zh": "chinese",
|
| 84 |
+
"ko": "korean",
|
| 85 |
+
"ja": "japanese",
|
| 86 |
+
"ar": "arabic",
|
| 87 |
+
"cs": "czech",
|
| 88 |
+
"ru": "russian",
|
| 89 |
+
"uk": "ukraine",
|
| 90 |
+
"et": "estonian",
|
| 91 |
+
"bho": "bhojpuri",
|
| 92 |
+
"sr_latin": "serbian",
|
| 93 |
+
"de": "german",
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
target_language_name = lang_name_map.get(target_lang_code, "the target language")
|
| 97 |
+
|
| 98 |
+
prompt = (
|
| 99 |
+
f"Human: Please translate the following text into {target_language_name}: \n"
|
| 100 |
+
f"{source_text}<|im_end|>\n"
|
| 101 |
+
f"Assistant:"
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
prompts_to_generate = [prompt]
|
| 105 |
+
print("Formatted Prompt:\n", prompt)
|
| 106 |
+
|
| 107 |
+
sampling_params = SamplingParams(
|
| 108 |
+
n=1,
|
| 109 |
+
temperature=0.001,
|
| 110 |
+
top_p=0.001,
|
| 111 |
+
max_tokens=512
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
outputs = llm.generate(prompts_to_generate, sampling_params)
|
| 115 |
+
|
| 116 |
+
for output in outputs:
|
| 117 |
+
generated_text = output.outputs[0].strip()
|
| 118 |
+
print(f"translation: {generated_text}")
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
## Apply MBR decoding
|
| 122 |
+
First, run random sample decoding:
|
| 123 |
+
```python
|
| 124 |
+
from vllm import LLM, SamplingParams
|
| 125 |
+
|
| 126 |
model_path = "path/to/your/algharb_model"
|
| 127 |
llm = LLM(model=model_path)
|
| 128 |
|
|
|
|
| 129 |
source_text = "This paper presents the Algharb system, our submission to the WMT 2025."
|
| 130 |
+
source_lang_code = "en"
|
| 131 |
+
target_lang_code = "zh"
|
| 132 |
|
|
|
|
| 133 |
lang_name_map = {
|
| 134 |
+
"en": "english"
|
| 135 |
+
"zh": "chinese",
|
| 136 |
+
"ko": "korean",
|
| 137 |
+
"ja": "japanese",
|
| 138 |
+
"ar": "arabic",
|
| 139 |
+
"cs": "czech",
|
| 140 |
+
"ru": "russian",
|
| 141 |
+
"uk": "ukraine",
|
| 142 |
+
"et": "estonian",
|
| 143 |
+
"bho": "bhojpuri",
|
| 144 |
+
"sr_latin": "serbian",
|
| 145 |
+
"de": "german",
|
| 146 |
}
|
| 147 |
|
| 148 |
target_language_name = lang_name_map.get(target_lang_code, "the target language")
|
| 149 |
|
| 150 |
+
|
| 151 |
prompt = (
|
| 152 |
f"Human: Please translate the following text into {target_language_name}: \n"
|
| 153 |
f"{source_text}<|im_end|>\n"
|
|
|
|
| 159 |
|
| 160 |
sampling_params = SamplingParams(
|
| 161 |
n=100,
|
| 162 |
+
temperature=1,
|
| 163 |
+
top_p=1,
|
| 164 |
max_tokens=512
|
| 165 |
)
|
| 166 |
|
|
|
|
| 167 |
outputs = llm.generate(prompts_to_generate, sampling_params)
|
| 168 |
|
|
|
|
| 169 |
# The 'outputs' list contains one item for each prompt.
|
| 170 |
for output in outputs:
|
| 171 |
prompt_used = output.prompt
|
|
|
|
| 177 |
print(f"Candidate {i+1}: {generated_text}")
|
| 178 |
```
|
| 179 |
|
|
|
|
| 180 |
```bash
|
| 181 |
comet-mbr -s src.txt -t mbr_sample_100.txt -o mbr_trans.txt --num_samples 100 --gpus 1 --qe_model Unbabel/wmt22-cometkiwi-da
|
| 182 |
```
|
marco_mt_label.png
CHANGED
|
|