怀羽
commited on
Commit
·
9b1e49e
1
Parent(s):
3ec1f93
first push
Browse files- .gitattributes +1 -0
- README.md +1 -3
- added_tokens.json +24 -0
- config.json +30 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- model.safetensors.index.json +450 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +209 -0
- trainer_state.json +902 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +604 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1 @@
|
|
| 1 |
-
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
---
|
|
|
|
| 1 |
+
new repo
|
|
|
|
|
|
added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen3ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151643,
|
| 9 |
+
"head_dim": 128,
|
| 10 |
+
"hidden_act": "silu",
|
| 11 |
+
"hidden_size": 5120,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 17408,
|
| 14 |
+
"max_position_embeddings": 4096,
|
| 15 |
+
"max_window_layers": 40,
|
| 16 |
+
"model_type": "qwen3",
|
| 17 |
+
"num_attention_heads": 40,
|
| 18 |
+
"num_hidden_layers": 40,
|
| 19 |
+
"num_key_value_heads": 8,
|
| 20 |
+
"rms_norm_eps": 1e-06,
|
| 21 |
+
"rope_scaling": null,
|
| 22 |
+
"rope_theta": 10000,
|
| 23 |
+
"sliding_window": null,
|
| 24 |
+
"tie_word_embeddings": false,
|
| 25 |
+
"torch_dtype": "bfloat16",
|
| 26 |
+
"transformers_version": "4.51.3",
|
| 27 |
+
"use_cache": false,
|
| 28 |
+
"use_sliding_window": false,
|
| 29 |
+
"vocab_size": 151936
|
| 30 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"eos_token_id": 151643,
|
| 4 |
+
"max_new_tokens": 2048,
|
| 5 |
+
"transformers_version": "4.51.3"
|
| 6 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 29536614400
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 30 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 31 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 32 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 33 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 34 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 35 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
| 36 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 41 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 42 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 43 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 44 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 45 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 46 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
| 47 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 48 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 52 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 53 |
+
"model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 54 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 55 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 56 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 57 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
| 58 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 59 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 60 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 63 |
+
"model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 64 |
+
"model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 65 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 66 |
+
"model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 67 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 68 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 69 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 70 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 71 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 72 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 74 |
+
"model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 75 |
+
"model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 76 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 77 |
+
"model.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 78 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 79 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 80 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 81 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 82 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 83 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 84 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 85 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 86 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 87 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 88 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 89 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 90 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 91 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 92 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 93 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 94 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 95 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 96 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 97 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 98 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 99 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 100 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 101 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 102 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 103 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 104 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 105 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 106 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 107 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 108 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 109 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 110 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 111 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 112 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 113 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 114 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 115 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 116 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 117 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 118 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 119 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 120 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 121 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 122 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 123 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 124 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 125 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 126 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 127 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 128 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 129 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 130 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 131 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 132 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 133 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 134 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 135 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 136 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 137 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 138 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 139 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 140 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 141 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 142 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 143 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 144 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 145 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
| 146 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 147 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 148 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
| 149 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 150 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 151 |
+
"model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 152 |
+
"model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 153 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 154 |
+
"model.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 155 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 156 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 157 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 158 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 159 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 160 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 161 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 162 |
+
"model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 163 |
+
"model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 164 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 165 |
+
"model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 166 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 167 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
| 168 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 169 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 170 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
| 171 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 172 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 173 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 174 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 175 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 176 |
+
"model.layers.22.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 177 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 178 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
| 179 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 180 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 181 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
| 182 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 183 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 184 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 185 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 186 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 187 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 188 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 189 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
| 190 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 191 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 192 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
| 193 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 194 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 195 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 196 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 197 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 198 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 199 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 200 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
| 201 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 202 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 203 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
| 204 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 205 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 206 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 207 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 208 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 209 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 210 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 211 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
| 212 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 213 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 214 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
| 215 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 216 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 217 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 218 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 219 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 220 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 221 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 222 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
| 223 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 224 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 225 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
| 226 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 227 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 228 |
+
"model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 229 |
+
"model.layers.27.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 230 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 231 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 232 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 233 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
| 234 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 235 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 236 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
| 237 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 238 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 239 |
+
"model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 240 |
+
"model.layers.28.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 241 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 242 |
+
"model.layers.28.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 243 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 244 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 245 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 246 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 247 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 248 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 249 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 250 |
+
"model.layers.29.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 251 |
+
"model.layers.29.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 252 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 253 |
+
"model.layers.29.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 254 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 255 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 256 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 257 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 258 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 259 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 260 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 261 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 262 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 263 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 264 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 265 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 266 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
| 267 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 268 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 269 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
| 270 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 272 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 273 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 274 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 275 |
+
"model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 276 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 277 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 278 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 279 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 280 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 281 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 282 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 283 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 284 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 285 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 286 |
+
"model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 287 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 288 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 289 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 290 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 291 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 292 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 293 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 294 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 295 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 296 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 297 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 298 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 299 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 300 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 301 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 302 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 303 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 304 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 305 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 306 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 307 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 308 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 309 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 310 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 311 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 312 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 313 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 314 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 315 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 316 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 317 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 318 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 319 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 320 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 321 |
+
"model.layers.34.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 322 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 323 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 324 |
+
"model.layers.34.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 325 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 326 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 327 |
+
"model.layers.35.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 328 |
+
"model.layers.35.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 329 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 330 |
+
"model.layers.35.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 331 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 332 |
+
"model.layers.35.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 333 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 334 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 335 |
+
"model.layers.35.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 336 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 337 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 338 |
+
"model.layers.36.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 339 |
+
"model.layers.36.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 340 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 341 |
+
"model.layers.36.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 342 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 343 |
+
"model.layers.36.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
| 344 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
| 345 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
| 346 |
+
"model.layers.36.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
| 347 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
| 348 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
| 349 |
+
"model.layers.37.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 350 |
+
"model.layers.37.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 351 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 352 |
+
"model.layers.37.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 353 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 354 |
+
"model.layers.37.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
| 355 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
| 356 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
| 357 |
+
"model.layers.37.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
| 358 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
| 359 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
| 360 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 361 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 362 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 363 |
+
"model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 364 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 365 |
+
"model.layers.38.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
| 366 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
| 367 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
| 368 |
+
"model.layers.38.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
| 369 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
| 370 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
| 371 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 372 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 373 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 374 |
+
"model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 375 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 376 |
+
"model.layers.39.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
| 377 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
| 378 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
| 379 |
+
"model.layers.39.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
| 380 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
| 381 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
| 382 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 383 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 384 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 385 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 386 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 387 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
| 388 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 389 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 390 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
| 391 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 392 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 393 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 394 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 395 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 396 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 397 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 398 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
| 399 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 400 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 401 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
| 402 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 403 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 404 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 405 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 406 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 407 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 408 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 409 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
| 410 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 411 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 412 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
| 413 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 414 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 415 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 416 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 417 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 418 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 419 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 420 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
| 421 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 422 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 423 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
| 424 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 425 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 426 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 427 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 428 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 429 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 430 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 431 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
| 432 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 433 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 434 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
| 435 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 436 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 437 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 438 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 439 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 440 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 441 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 442 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
| 443 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 444 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 445 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
| 446 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 447 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 448 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
| 449 |
+
}
|
| 450 |
+
}
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ad6b7d87f57bc456426c5f16c5d2035d3c3c343f3a82e1cc3549a0f658719187
|
| 3 |
+
size 1465
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
| 3 |
+
size 11421896
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ 'System: ' + system_message + '<|im_end|>' + '\n' }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ 'Human: ' + content + '<|im_end|>' + '\nAssistant:' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\n' }}{% endif %}{% endfor %}",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|im_end|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"extra_special_tokens": {},
|
| 203 |
+
"model_max_length": 131072,
|
| 204 |
+
"pad_token": "<|endoftext|>",
|
| 205 |
+
"padding_side": "right",
|
| 206 |
+
"split_special_tokens": false,
|
| 207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 208 |
+
"unk_token": null
|
| 209 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,902 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 5.0,
|
| 6 |
+
"eval_steps": 500,
|
| 7 |
+
"global_step": 2485,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.04024144869215292,
|
| 14 |
+
"grad_norm": 0.8856053732817273,
|
| 15 |
+
"learning_rate": 4.999278820633416e-05,
|
| 16 |
+
"loss": 0.5826,
|
| 17 |
+
"step": 20
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.08048289738430583,
|
| 21 |
+
"grad_norm": 0.7385891532669175,
|
| 22 |
+
"learning_rate": 4.996961926996955e-05,
|
| 23 |
+
"loss": 0.5449,
|
| 24 |
+
"step": 40
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.12072434607645875,
|
| 28 |
+
"grad_norm": 0.72926414566868,
|
| 29 |
+
"learning_rate": 4.9930488023869036e-05,
|
| 30 |
+
"loss": 0.5618,
|
| 31 |
+
"step": 60
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.16096579476861167,
|
| 35 |
+
"grad_norm": 0.6312617479451788,
|
| 36 |
+
"learning_rate": 4.987541948343489e-05,
|
| 37 |
+
"loss": 0.515,
|
| 38 |
+
"step": 80
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.2012072434607646,
|
| 42 |
+
"grad_norm": 0.6639335448923683,
|
| 43 |
+
"learning_rate": 4.980444885229155e-05,
|
| 44 |
+
"loss": 0.5328,
|
| 45 |
+
"step": 100
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.2414486921529175,
|
| 49 |
+
"grad_norm": 0.6557066466913923,
|
| 50 |
+
"learning_rate": 4.9717621499781034e-05,
|
| 51 |
+
"loss": 0.523,
|
| 52 |
+
"step": 120
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"epoch": 0.28169014084507044,
|
| 56 |
+
"grad_norm": 0.646966336694488,
|
| 57 |
+
"learning_rate": 4.961499293195967e-05,
|
| 58 |
+
"loss": 0.5214,
|
| 59 |
+
"step": 140
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 0.32193158953722334,
|
| 63 |
+
"grad_norm": 0.6798500591020816,
|
| 64 |
+
"learning_rate": 4.949662875611487e-05,
|
| 65 |
+
"loss": 0.5143,
|
| 66 |
+
"step": 160
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.36217303822937624,
|
| 70 |
+
"grad_norm": 0.7622327150861464,
|
| 71 |
+
"learning_rate": 4.936260463882431e-05,
|
| 72 |
+
"loss": 0.507,
|
| 73 |
+
"step": 180
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.4024144869215292,
|
| 77 |
+
"grad_norm": 0.7701558072544397,
|
| 78 |
+
"learning_rate": 4.921300625758468e-05,
|
| 79 |
+
"loss": 0.5098,
|
| 80 |
+
"step": 200
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.4426559356136821,
|
| 84 |
+
"grad_norm": 0.6721766598194193,
|
| 85 |
+
"learning_rate": 4.9047929246040684e-05,
|
| 86 |
+
"loss": 0.4959,
|
| 87 |
+
"step": 220
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.482897384305835,
|
| 91 |
+
"grad_norm": 0.5759821922844843,
|
| 92 |
+
"learning_rate": 4.886747913284935e-05,
|
| 93 |
+
"loss": 0.4786,
|
| 94 |
+
"step": 240
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 0.5231388329979879,
|
| 98 |
+
"grad_norm": 0.6241582936916275,
|
| 99 |
+
"learning_rate": 4.8671771274218864e-05,
|
| 100 |
+
"loss": 0.4936,
|
| 101 |
+
"step": 260
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 0.5633802816901409,
|
| 105 |
+
"grad_norm": 0.6085499176420257,
|
| 106 |
+
"learning_rate": 4.846093078016486e-05,
|
| 107 |
+
"loss": 0.4927,
|
| 108 |
+
"step": 280
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.6036217303822937,
|
| 112 |
+
"grad_norm": 0.7195639159658046,
|
| 113 |
+
"learning_rate": 4.823509243453144e-05,
|
| 114 |
+
"loss": 0.4921,
|
| 115 |
+
"step": 300
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.6438631790744467,
|
| 119 |
+
"grad_norm": 0.6346981783065212,
|
| 120 |
+
"learning_rate": 4.7994400608828007e-05,
|
| 121 |
+
"loss": 0.4765,
|
| 122 |
+
"step": 320
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.6841046277665996,
|
| 126 |
+
"grad_norm": 0.6760210496604738,
|
| 127 |
+
"learning_rate": 4.7739009169937e-05,
|
| 128 |
+
"loss": 0.4694,
|
| 129 |
+
"step": 340
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.7243460764587525,
|
| 133 |
+
"grad_norm": 0.7309281782293976,
|
| 134 |
+
"learning_rate": 4.7469081381751526e-05,
|
| 135 |
+
"loss": 0.4693,
|
| 136 |
+
"step": 360
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 0.7645875251509054,
|
| 140 |
+
"grad_norm": 0.5121852796257732,
|
| 141 |
+
"learning_rate": 4.7184789800805785e-05,
|
| 142 |
+
"loss": 0.4626,
|
| 143 |
+
"step": 380
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"epoch": 0.8048289738430584,
|
| 147 |
+
"grad_norm": 0.5626013205724073,
|
| 148 |
+
"learning_rate": 4.688631616596496e-05,
|
| 149 |
+
"loss": 0.463,
|
| 150 |
+
"step": 400
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"epoch": 0.8450704225352113,
|
| 154 |
+
"grad_norm": 0.6626243373594697,
|
| 155 |
+
"learning_rate": 4.657385128224517e-05,
|
| 156 |
+
"loss": 0.4781,
|
| 157 |
+
"step": 420
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"epoch": 0.8853118712273642,
|
| 161 |
+
"grad_norm": 0.5995753685938809,
|
| 162 |
+
"learning_rate": 4.624759489883771e-05,
|
| 163 |
+
"loss": 0.445,
|
| 164 |
+
"step": 440
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.9255533199195171,
|
| 168 |
+
"grad_norm": 0.5780765450132732,
|
| 169 |
+
"learning_rate": 4.5907755581415454e-05,
|
| 170 |
+
"loss": 0.4626,
|
| 171 |
+
"step": 460
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.96579476861167,
|
| 175 |
+
"grad_norm": 0.5478910002284612,
|
| 176 |
+
"learning_rate": 4.555455057880334e-05,
|
| 177 |
+
"loss": 0.4597,
|
| 178 |
+
"step": 480
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"epoch": 1.0060362173038229,
|
| 182 |
+
"grad_norm": 0.48568823231381825,
|
| 183 |
+
"learning_rate": 4.518820568409781e-05,
|
| 184 |
+
"loss": 0.406,
|
| 185 |
+
"step": 500
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 1.0462776659959758,
|
| 189 |
+
"grad_norm": 0.5062057380908122,
|
| 190 |
+
"learning_rate": 4.480895509032424e-05,
|
| 191 |
+
"loss": 0.1795,
|
| 192 |
+
"step": 520
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"epoch": 1.0865191146881288,
|
| 196 |
+
"grad_norm": 0.5205860419378047,
|
| 197 |
+
"learning_rate": 4.441704124072455e-05,
|
| 198 |
+
"loss": 0.1902,
|
| 199 |
+
"step": 540
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"epoch": 1.1267605633802817,
|
| 203 |
+
"grad_norm": 0.519552686982609,
|
| 204 |
+
"learning_rate": 4.40127146737707e-05,
|
| 205 |
+
"loss": 0.1751,
|
| 206 |
+
"step": 560
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 1.1670020120724347,
|
| 210 |
+
"grad_norm": 0.519651130331484,
|
| 211 |
+
"learning_rate": 4.3596233863003135e-05,
|
| 212 |
+
"loss": 0.1847,
|
| 213 |
+
"step": 580
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 1.2072434607645874,
|
| 217 |
+
"grad_norm": 0.48247829692592525,
|
| 218 |
+
"learning_rate": 4.316786505179659e-05,
|
| 219 |
+
"loss": 0.1861,
|
| 220 |
+
"step": 600
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"epoch": 1.2474849094567404,
|
| 224 |
+
"grad_norm": 0.4487348974547772,
|
| 225 |
+
"learning_rate": 4.27278820831589e-05,
|
| 226 |
+
"loss": 0.2026,
|
| 227 |
+
"step": 620
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"epoch": 1.2877263581488934,
|
| 231 |
+
"grad_norm": 0.41599318043186545,
|
| 232 |
+
"learning_rate": 4.227656622467162e-05,
|
| 233 |
+
"loss": 0.2016,
|
| 234 |
+
"step": 640
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 1.3279678068410463,
|
| 238 |
+
"grad_norm": 0.4540433485384787,
|
| 239 |
+
"learning_rate": 4.181420598868425e-05,
|
| 240 |
+
"loss": 0.1933,
|
| 241 |
+
"step": 660
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"epoch": 1.3682092555331993,
|
| 245 |
+
"grad_norm": 0.5514617072950766,
|
| 246 |
+
"learning_rate": 4.13410969478772e-05,
|
| 247 |
+
"loss": 0.2015,
|
| 248 |
+
"step": 680
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 1.408450704225352,
|
| 252 |
+
"grad_norm": 0.4605005045885439,
|
| 253 |
+
"learning_rate": 4.085754154631125e-05,
|
| 254 |
+
"loss": 0.1957,
|
| 255 |
+
"step": 700
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 1.448692152917505,
|
| 259 |
+
"grad_norm": 0.4596046168091651,
|
| 260 |
+
"learning_rate": 4.036384890608438e-05,
|
| 261 |
+
"loss": 0.2088,
|
| 262 |
+
"step": 720
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"epoch": 1.488933601609658,
|
| 266 |
+
"grad_norm": 0.5197294768215174,
|
| 267 |
+
"learning_rate": 3.9860334629719484e-05,
|
| 268 |
+
"loss": 0.208,
|
| 269 |
+
"step": 740
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"epoch": 1.529175050301811,
|
| 273 |
+
"grad_norm": 0.6580375239377614,
|
| 274 |
+
"learning_rate": 3.9347320598409434e-05,
|
| 275 |
+
"loss": 0.2124,
|
| 276 |
+
"step": 760
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"epoch": 1.5694164989939638,
|
| 280 |
+
"grad_norm": 0.4181955378555661,
|
| 281 |
+
"learning_rate": 3.8825134766248266e-05,
|
| 282 |
+
"loss": 0.2032,
|
| 283 |
+
"step": 780
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"epoch": 1.6096579476861166,
|
| 287 |
+
"grad_norm": 0.49205001089005324,
|
| 288 |
+
"learning_rate": 3.829411095058029e-05,
|
| 289 |
+
"loss": 0.2077,
|
| 290 |
+
"step": 800
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 1.6498993963782698,
|
| 294 |
+
"grad_norm": 0.4873486109938958,
|
| 295 |
+
"learning_rate": 3.775458861860086e-05,
|
| 296 |
+
"loss": 0.197,
|
| 297 |
+
"step": 820
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 1.6901408450704225,
|
| 301 |
+
"grad_norm": 0.5213796288743413,
|
| 302 |
+
"learning_rate": 3.720691267034547e-05,
|
| 303 |
+
"loss": 0.2024,
|
| 304 |
+
"step": 840
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"epoch": 1.7303822937625755,
|
| 308 |
+
"grad_norm": 0.5064104251566499,
|
| 309 |
+
"learning_rate": 3.665143321820576e-05,
|
| 310 |
+
"loss": 0.2046,
|
| 311 |
+
"step": 860
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"epoch": 1.7706237424547284,
|
| 315 |
+
"grad_norm": 0.5249037742075398,
|
| 316 |
+
"learning_rate": 3.6088505363113435e-05,
|
| 317 |
+
"loss": 0.2113,
|
| 318 |
+
"step": 880
|
| 319 |
+
},
|
| 320 |
+
{
|
| 321 |
+
"epoch": 1.8108651911468812,
|
| 322 |
+
"grad_norm": 0.5323135228705763,
|
| 323 |
+
"learning_rate": 3.5518488967535144e-05,
|
| 324 |
+
"loss": 0.2015,
|
| 325 |
+
"step": 900
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"epoch": 1.8511066398390343,
|
| 329 |
+
"grad_norm": 0.45702728996195346,
|
| 330 |
+
"learning_rate": 3.4941748425423506e-05,
|
| 331 |
+
"loss": 0.2091,
|
| 332 |
+
"step": 920
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 1.891348088531187,
|
| 336 |
+
"grad_norm": 0.48980668848273645,
|
| 337 |
+
"learning_rate": 3.435865242927119e-05,
|
| 338 |
+
"loss": 0.2089,
|
| 339 |
+
"step": 940
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 1.93158953722334,
|
| 343 |
+
"grad_norm": 0.43577327809651956,
|
| 344 |
+
"learning_rate": 3.3769573734417256e-05,
|
| 345 |
+
"loss": 0.2115,
|
| 346 |
+
"step": 960
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 1.971830985915493,
|
| 350 |
+
"grad_norm": 0.5094162027924247,
|
| 351 |
+
"learning_rate": 3.317488892075601e-05,
|
| 352 |
+
"loss": 0.2094,
|
| 353 |
+
"step": 980
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 2.0120724346076457,
|
| 357 |
+
"grad_norm": 0.3457362763246621,
|
| 358 |
+
"learning_rate": 3.257497815200116e-05,
|
| 359 |
+
"loss": 0.1726,
|
| 360 |
+
"step": 1000
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 2.052313883299799,
|
| 364 |
+
"grad_norm": 0.37034508814670536,
|
| 365 |
+
"learning_rate": 3.1970224932658735e-05,
|
| 366 |
+
"loss": 0.0859,
|
| 367 |
+
"step": 1020
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 2.0925553319919517,
|
| 371 |
+
"grad_norm": 0.37642286093876015,
|
| 372 |
+
"learning_rate": 3.136101586286457e-05,
|
| 373 |
+
"loss": 0.0862,
|
| 374 |
+
"step": 1040
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 2.132796780684105,
|
| 378 |
+
"grad_norm": 0.3194432979842797,
|
| 379 |
+
"learning_rate": 3.0747740391242634e-05,
|
| 380 |
+
"loss": 0.0879,
|
| 381 |
+
"step": 1060
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 2.1730382293762576,
|
| 385 |
+
"grad_norm": 0.31686036565206543,
|
| 386 |
+
"learning_rate": 3.0130790565942552e-05,
|
| 387 |
+
"loss": 0.083,
|
| 388 |
+
"step": 1080
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 2.2132796780684103,
|
| 392 |
+
"grad_norm": 0.48975203689721203,
|
| 393 |
+
"learning_rate": 2.9510560784015257e-05,
|
| 394 |
+
"loss": 0.0887,
|
| 395 |
+
"step": 1100
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 2.2535211267605635,
|
| 399 |
+
"grad_norm": 0.3970890768904178,
|
| 400 |
+
"learning_rate": 2.8887447539287083e-05,
|
| 401 |
+
"loss": 0.0938,
|
| 402 |
+
"step": 1120
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 2.2937625754527162,
|
| 406 |
+
"grad_norm": 0.42930287541107787,
|
| 407 |
+
"learning_rate": 2.8261849168893462e-05,
|
| 408 |
+
"loss": 0.0894,
|
| 409 |
+
"step": 1140
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"epoch": 2.3340040241448694,
|
| 413 |
+
"grad_norm": 0.40823847069100183,
|
| 414 |
+
"learning_rate": 2.763416559863425e-05,
|
| 415 |
+
"loss": 0.0868,
|
| 416 |
+
"step": 1160
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 2.374245472837022,
|
| 420 |
+
"grad_norm": 0.42121750405319264,
|
| 421 |
+
"learning_rate": 2.7004798087313437e-05,
|
| 422 |
+
"loss": 0.0912,
|
| 423 |
+
"step": 1180
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 2.414486921529175,
|
| 427 |
+
"grad_norm": 0.3214982105059483,
|
| 428 |
+
"learning_rate": 2.6374148970226774e-05,
|
| 429 |
+
"loss": 0.0918,
|
| 430 |
+
"step": 1200
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 2.454728370221328,
|
| 434 |
+
"grad_norm": 0.34082865221526726,
|
| 435 |
+
"learning_rate": 2.5742621401961143e-05,
|
| 436 |
+
"loss": 0.091,
|
| 437 |
+
"step": 1220
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 2.494969818913481,
|
| 441 |
+
"grad_norm": 0.4793154273361008,
|
| 442 |
+
"learning_rate": 2.5110619098670263e-05,
|
| 443 |
+
"loss": 0.0864,
|
| 444 |
+
"step": 1240
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 2.535211267605634,
|
| 448 |
+
"grad_norm": 0.39451008511666086,
|
| 449 |
+
"learning_rate": 2.447854607999135e-05,
|
| 450 |
+
"loss": 0.0927,
|
| 451 |
+
"step": 1260
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 2.5754527162977867,
|
| 455 |
+
"grad_norm": 0.3656682972169247,
|
| 456 |
+
"learning_rate": 2.38468064107678e-05,
|
| 457 |
+
"loss": 0.0895,
|
| 458 |
+
"step": 1280
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 2.6156941649899395,
|
| 462 |
+
"grad_norm": 0.3605202374697158,
|
| 463 |
+
"learning_rate": 2.3215803942742938e-05,
|
| 464 |
+
"loss": 0.0953,
|
| 465 |
+
"step": 1300
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 2.6559356136820926,
|
| 469 |
+
"grad_norm": 0.33578430684018057,
|
| 470 |
+
"learning_rate": 2.2585942056390058e-05,
|
| 471 |
+
"loss": 0.0966,
|
| 472 |
+
"step": 1320
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 2.6961770623742454,
|
| 476 |
+
"grad_norm": 0.3794779373893201,
|
| 477 |
+
"learning_rate": 2.195762340304364e-05,
|
| 478 |
+
"loss": 0.0915,
|
| 479 |
+
"step": 1340
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 2.7364185110663986,
|
| 483 |
+
"grad_norm": 0.33351508610885644,
|
| 484 |
+
"learning_rate": 2.133124964749678e-05,
|
| 485 |
+
"loss": 0.0879,
|
| 486 |
+
"step": 1360
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 2.7766599597585513,
|
| 490 |
+
"grad_norm": 0.41067282583568215,
|
| 491 |
+
"learning_rate": 2.0707221211229205e-05,
|
| 492 |
+
"loss": 0.0979,
|
| 493 |
+
"step": 1380
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 2.816901408450704,
|
| 497 |
+
"grad_norm": 0.4291530941671277,
|
| 498 |
+
"learning_rate": 2.008593701643017e-05,
|
| 499 |
+
"loss": 0.0946,
|
| 500 |
+
"step": 1400
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 2.857142857142857,
|
| 504 |
+
"grad_norm": 0.3613865415142941,
|
| 505 |
+
"learning_rate": 1.9467794230979712e-05,
|
| 506 |
+
"loss": 0.0957,
|
| 507 |
+
"step": 1420
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 2.89738430583501,
|
| 511 |
+
"grad_norm": 0.35323941645271395,
|
| 512 |
+
"learning_rate": 1.8853188014551533e-05,
|
| 513 |
+
"loss": 0.0883,
|
| 514 |
+
"step": 1440
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 2.937625754527163,
|
| 518 |
+
"grad_norm": 0.38038366932243284,
|
| 519 |
+
"learning_rate": 1.8242511265999452e-05,
|
| 520 |
+
"loss": 0.0944,
|
| 521 |
+
"step": 1460
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 2.977867203219316,
|
| 525 |
+
"grad_norm": 0.4211867067510389,
|
| 526 |
+
"learning_rate": 1.7636154372189363e-05,
|
| 527 |
+
"loss": 0.0859,
|
| 528 |
+
"step": 1480
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 3.0181086519114686,
|
| 532 |
+
"grad_norm": 0.23971000463797287,
|
| 533 |
+
"learning_rate": 1.7034504958436843e-05,
|
| 534 |
+
"loss": 0.0686,
|
| 535 |
+
"step": 1500
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 3.058350100603622,
|
| 539 |
+
"grad_norm": 0.3934268138965833,
|
| 540 |
+
"learning_rate": 1.643794764071024e-05,
|
| 541 |
+
"loss": 0.0387,
|
| 542 |
+
"step": 1520
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 3.0985915492957745,
|
| 546 |
+
"grad_norm": 0.2953008266603751,
|
| 547 |
+
"learning_rate": 1.5846863779757492e-05,
|
| 548 |
+
"loss": 0.0402,
|
| 549 |
+
"step": 1540
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 3.1388329979879277,
|
| 553 |
+
"grad_norm": 0.30010306958393923,
|
| 554 |
+
"learning_rate": 1.5261631237313967e-05,
|
| 555 |
+
"loss": 0.0393,
|
| 556 |
+
"step": 1560
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"epoch": 3.1790744466800804,
|
| 560 |
+
"grad_norm": 0.30120051063507675,
|
| 561 |
+
"learning_rate": 1.4682624134547021e-05,
|
| 562 |
+
"loss": 0.0363,
|
| 563 |
+
"step": 1580
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 3.219315895372233,
|
| 567 |
+
"grad_norm": 0.2515653178386247,
|
| 568 |
+
"learning_rate": 1.4110212612891887e-05,
|
| 569 |
+
"loss": 0.0383,
|
| 570 |
+
"step": 1600
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 3.2595573440643864,
|
| 574 |
+
"grad_norm": 0.27249388315493484,
|
| 575 |
+
"learning_rate": 1.3544762597431607e-05,
|
| 576 |
+
"loss": 0.0396,
|
| 577 |
+
"step": 1620
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 3.299798792756539,
|
| 581 |
+
"grad_norm": 0.3824387788042599,
|
| 582 |
+
"learning_rate": 1.2986635562972413e-05,
|
| 583 |
+
"loss": 0.0406,
|
| 584 |
+
"step": 1640
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 3.3400402414486923,
|
| 588 |
+
"grad_norm": 0.4190218976563753,
|
| 589 |
+
"learning_rate": 1.2436188302963944e-05,
|
| 590 |
+
"loss": 0.0439,
|
| 591 |
+
"step": 1660
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 3.380281690140845,
|
| 595 |
+
"grad_norm": 0.2317410734176642,
|
| 596 |
+
"learning_rate": 1.1893772701412233e-05,
|
| 597 |
+
"loss": 0.0423,
|
| 598 |
+
"step": 1680
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"epoch": 3.4205231388329977,
|
| 602 |
+
"grad_norm": 0.278591876157434,
|
| 603 |
+
"learning_rate": 1.1359735507931035e-05,
|
| 604 |
+
"loss": 0.0407,
|
| 605 |
+
"step": 1700
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"epoch": 3.460764587525151,
|
| 609 |
+
"grad_norm": 0.24119224796247,
|
| 610 |
+
"learning_rate": 1.0834418116075484e-05,
|
| 611 |
+
"loss": 0.0417,
|
| 612 |
+
"step": 1720
|
| 613 |
+
},
|
| 614 |
+
{
|
| 615 |
+
"epoch": 3.5010060362173037,
|
| 616 |
+
"grad_norm": 0.2958581734865895,
|
| 617 |
+
"learning_rate": 1.0318156345099692e-05,
|
| 618 |
+
"loss": 0.0371,
|
| 619 |
+
"step": 1740
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"epoch": 3.541247484909457,
|
| 623 |
+
"grad_norm": 0.27477669064501764,
|
| 624 |
+
"learning_rate": 9.811280225277786e-06,
|
| 625 |
+
"loss": 0.0403,
|
| 626 |
+
"step": 1760
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 3.5814889336016096,
|
| 630 |
+
"grad_norm": 0.32430825636968,
|
| 631 |
+
"learning_rate": 9.314113786925777e-06,
|
| 632 |
+
"loss": 0.0396,
|
| 633 |
+
"step": 1780
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 3.6217303822937623,
|
| 637 |
+
"grad_norm": 0.3312827951095654,
|
| 638 |
+
"learning_rate": 8.826974853258884e-06,
|
| 639 |
+
"loss": 0.0407,
|
| 640 |
+
"step": 1800
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 3.6619718309859155,
|
| 644 |
+
"grad_norm": 0.24013332678773616,
|
| 645 |
+
"learning_rate": 8.35017483721696e-06,
|
| 646 |
+
"loss": 0.0414,
|
| 647 |
+
"step": 1820
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"epoch": 3.7022132796780687,
|
| 651 |
+
"grad_norm": 0.28553574970459594,
|
| 652 |
+
"learning_rate": 7.884018542387731e-06,
|
| 653 |
+
"loss": 0.0416,
|
| 654 |
+
"step": 1840
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"epoch": 3.7424547283702214,
|
| 658 |
+
"grad_norm": 0.2631019454087187,
|
| 659 |
+
"learning_rate": 7.428803968155307e-06,
|
| 660 |
+
"loss": 0.0401,
|
| 661 |
+
"step": 1860
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 3.782696177062374,
|
| 665 |
+
"grad_norm": 0.26131465743997634,
|
| 666 |
+
"learning_rate": 6.984822119198253e-06,
|
| 667 |
+
"loss": 0.0409,
|
| 668 |
+
"step": 1880
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"epoch": 3.822937625754527,
|
| 672 |
+
"grad_norm": 0.23335316567031417,
|
| 673 |
+
"learning_rate": 6.552356819459354e-06,
|
| 674 |
+
"loss": 0.0437,
|
| 675 |
+
"step": 1900
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 3.86317907444668,
|
| 679 |
+
"grad_norm": 0.2745249201872649,
|
| 680 |
+
"learning_rate": 6.131684530705572e-06,
|
| 681 |
+
"loss": 0.0397,
|
| 682 |
+
"step": 1920
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 3.9034205231388333,
|
| 686 |
+
"grad_norm": 0.2608587874278287,
|
| 687 |
+
"learning_rate": 5.7230741757946485e-06,
|
| 688 |
+
"loss": 0.0409,
|
| 689 |
+
"step": 1940
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"epoch": 3.943661971830986,
|
| 693 |
+
"grad_norm": 0.3249419421073309,
|
| 694 |
+
"learning_rate": 5.326786966760922e-06,
|
| 695 |
+
"loss": 0.0408,
|
| 696 |
+
"step": 1960
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 3.9839034205231387,
|
| 700 |
+
"grad_norm": 0.29014887197719835,
|
| 701 |
+
"learning_rate": 4.943076237830541e-06,
|
| 702 |
+
"loss": 0.042,
|
| 703 |
+
"step": 1980
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 4.0241448692152915,
|
| 707 |
+
"grad_norm": 0.13140332328630258,
|
| 708 |
+
"learning_rate": 4.5721872834726755e-06,
|
| 709 |
+
"loss": 0.0285,
|
| 710 |
+
"step": 2000
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 4.064386317907445,
|
| 714 |
+
"grad_norm": 0.1599909046333746,
|
| 715 |
+
"learning_rate": 4.214357201590316e-06,
|
| 716 |
+
"loss": 0.0163,
|
| 717 |
+
"step": 2020
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 4.104627766599598,
|
| 721 |
+
"grad_norm": 0.22268037817504605,
|
| 722 |
+
"learning_rate": 3.869814741950833e-06,
|
| 723 |
+
"loss": 0.0169,
|
| 724 |
+
"step": 2040
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"epoch": 4.144869215291751,
|
| 728 |
+
"grad_norm": 0.19008998119875475,
|
| 729 |
+
"learning_rate": 3.5387801599533475e-06,
|
| 730 |
+
"loss": 0.0178,
|
| 731 |
+
"step": 2060
|
| 732 |
+
},
|
| 733 |
+
{
|
| 734 |
+
"epoch": 4.185110663983903,
|
| 735 |
+
"grad_norm": 0.28236212559906976,
|
| 736 |
+
"learning_rate": 3.2214650758261854e-06,
|
| 737 |
+
"loss": 0.0168,
|
| 738 |
+
"step": 2080
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"epoch": 4.225352112676056,
|
| 742 |
+
"grad_norm": 0.16411536065892163,
|
| 743 |
+
"learning_rate": 2.918072339344585e-06,
|
| 744 |
+
"loss": 0.0147,
|
| 745 |
+
"step": 2100
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"epoch": 4.26559356136821,
|
| 749 |
+
"grad_norm": 0.22329493065983927,
|
| 750 |
+
"learning_rate": 2.6287959001550787e-06,
|
| 751 |
+
"loss": 0.0172,
|
| 752 |
+
"step": 2120
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"epoch": 4.305835010060362,
|
| 756 |
+
"grad_norm": 0.23074348370306091,
|
| 757 |
+
"learning_rate": 2.3538206837894262e-06,
|
| 758 |
+
"loss": 0.0152,
|
| 759 |
+
"step": 2140
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"epoch": 4.346076458752515,
|
| 763 |
+
"grad_norm": 0.16346465568469334,
|
| 764 |
+
"learning_rate": 2.093322473447448e-06,
|
| 765 |
+
"loss": 0.0162,
|
| 766 |
+
"step": 2160
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"epoch": 4.386317907444668,
|
| 770 |
+
"grad_norm": 0.20894982405636947,
|
| 771 |
+
"learning_rate": 1.8474677976241973e-06,
|
| 772 |
+
"loss": 0.017,
|
| 773 |
+
"step": 2180
|
| 774 |
+
},
|
| 775 |
+
{
|
| 776 |
+
"epoch": 4.426559356136821,
|
| 777 |
+
"grad_norm": 0.2114272503288231,
|
| 778 |
+
"learning_rate": 1.6164138236534287e-06,
|
| 779 |
+
"loss": 0.0153,
|
| 780 |
+
"step": 2200
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"epoch": 4.466800804828974,
|
| 784 |
+
"grad_norm": 0.2549097134831871,
|
| 785 |
+
"learning_rate": 1.400308257235347e-06,
|
| 786 |
+
"loss": 0.0165,
|
| 787 |
+
"step": 2220
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"epoch": 4.507042253521127,
|
| 791 |
+
"grad_norm": 0.2629485973872836,
|
| 792 |
+
"learning_rate": 1.199289248012911e-06,
|
| 793 |
+
"loss": 0.0167,
|
| 794 |
+
"step": 2240
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"epoch": 4.54728370221328,
|
| 798 |
+
"grad_norm": 0.15948181770721337,
|
| 799 |
+
"learning_rate": 1.0134853012569918e-06,
|
| 800 |
+
"loss": 0.0147,
|
| 801 |
+
"step": 2260
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 4.5875251509054324,
|
| 805 |
+
"grad_norm": 0.2377257196332741,
|
| 806 |
+
"learning_rate": 8.430151957169341e-07,
|
| 807 |
+
"loss": 0.0172,
|
| 808 |
+
"step": 2280
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"epoch": 4.627766599597585,
|
| 812 |
+
"grad_norm": 0.12488849403623657,
|
| 813 |
+
"learning_rate": 6.879879076889223e-07,
|
| 814 |
+
"loss": 0.0169,
|
| 815 |
+
"step": 2300
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"epoch": 4.668008048289739,
|
| 819 |
+
"grad_norm": 0.17954160642164035,
|
| 820 |
+
"learning_rate": 5.485025413508122e-07,
|
| 821 |
+
"loss": 0.0173,
|
| 822 |
+
"step": 2320
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"epoch": 4.7082494969818915,
|
| 826 |
+
"grad_norm": 0.22632001709175115,
|
| 827 |
+
"learning_rate": 4.246482654078565e-07,
|
| 828 |
+
"loss": 0.0178,
|
| 829 |
+
"step": 2340
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"epoch": 4.748490945674044,
|
| 833 |
+
"grad_norm": 0.17862035740855048,
|
| 834 |
+
"learning_rate": 3.1650425608991397e-07,
|
| 835 |
+
"loss": 0.0169,
|
| 836 |
+
"step": 2360
|
| 837 |
+
},
|
| 838 |
+
{
|
| 839 |
+
"epoch": 4.788732394366197,
|
| 840 |
+
"grad_norm": 0.22768890327395705,
|
| 841 |
+
"learning_rate": 2.2413964653651142e-07,
|
| 842 |
+
"loss": 0.0182,
|
| 843 |
+
"step": 2380
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 4.82897384305835,
|
| 847 |
+
"grad_norm": 0.18617516446042512,
|
| 848 |
+
"learning_rate": 1.476134826021436e-07,
|
| 849 |
+
"loss": 0.0159,
|
| 850 |
+
"step": 2400
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 4.869215291750503,
|
| 854 |
+
"grad_norm": 0.22313146556884694,
|
| 855 |
+
"learning_rate": 8.697468511008888e-08,
|
| 856 |
+
"loss": 0.0174,
|
| 857 |
+
"step": 2420
|
| 858 |
+
},
|
| 859 |
+
{
|
| 860 |
+
"epoch": 4.909456740442656,
|
| 861 |
+
"grad_norm": 0.17950462343068288,
|
| 862 |
+
"learning_rate": 4.226201857882584e-08,
|
| 863 |
+
"loss": 0.017,
|
| 864 |
+
"step": 2440
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"epoch": 4.949698189134809,
|
| 868 |
+
"grad_norm": 0.20930529588954816,
|
| 869 |
+
"learning_rate": 1.3504066441069608e-08,
|
| 870 |
+
"loss": 0.0153,
|
| 871 |
+
"step": 2460
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"epoch": 4.989939637826962,
|
| 875 |
+
"grad_norm": 0.18167014719982993,
|
| 876 |
+
"learning_rate": 7.192127712579711e-10,
|
| 877 |
+
"loss": 0.0171,
|
| 878 |
+
"step": 2480
|
| 879 |
+
}
|
| 880 |
+
],
|
| 881 |
+
"logging_steps": 20,
|
| 882 |
+
"max_steps": 2485,
|
| 883 |
+
"num_input_tokens_seen": 0,
|
| 884 |
+
"num_train_epochs": 5,
|
| 885 |
+
"save_steps": 2000,
|
| 886 |
+
"stateful_callbacks": {
|
| 887 |
+
"TrainerControl": {
|
| 888 |
+
"args": {
|
| 889 |
+
"should_epoch_stop": false,
|
| 890 |
+
"should_evaluate": false,
|
| 891 |
+
"should_log": false,
|
| 892 |
+
"should_save": true,
|
| 893 |
+
"should_training_stop": true
|
| 894 |
+
},
|
| 895 |
+
"attributes": {}
|
| 896 |
+
}
|
| 897 |
+
},
|
| 898 |
+
"total_flos": 173976693145600.0,
|
| 899 |
+
"train_batch_size": 3,
|
| 900 |
+
"trial_name": null,
|
| 901 |
+
"trial_params": null
|
| 902 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f89043b612beaa81b0c9f49c76aef95228b2840ad7685c0552a1661f5b072d5d
|
| 3 |
+
size 8081
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 215 |
+
exclude_frozen_parameters)
|
| 216 |
+
elif zero_stage == 3:
|
| 217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 218 |
+
exclude_frozen_parameters)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 223 |
+
return
|
| 224 |
+
|
| 225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 227 |
+
|
| 228 |
+
if debug:
|
| 229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 231 |
+
|
| 232 |
+
wanted_params = len(frozen_param_shapes)
|
| 233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 237 |
+
|
| 238 |
+
total_params = 0
|
| 239 |
+
total_numel = 0
|
| 240 |
+
for name, shape in frozen_param_shapes.items():
|
| 241 |
+
total_params += 1
|
| 242 |
+
unpartitioned_numel = shape.numel()
|
| 243 |
+
total_numel += unpartitioned_numel
|
| 244 |
+
|
| 245 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 246 |
+
|
| 247 |
+
if debug:
|
| 248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 249 |
+
|
| 250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def _has_callable(obj, fn):
|
| 254 |
+
attr = getattr(obj, fn, None)
|
| 255 |
+
return callable(attr)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 259 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 260 |
+
|
| 261 |
+
# Reconstruction protocol:
|
| 262 |
+
#
|
| 263 |
+
# XXX: document this
|
| 264 |
+
|
| 265 |
+
if debug:
|
| 266 |
+
for i in range(world_size):
|
| 267 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 269 |
+
|
| 270 |
+
# XXX: memory usage doubles here (zero2)
|
| 271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 272 |
+
merged_single_partition_of_fp32_groups = []
|
| 273 |
+
for i in range(num_param_groups):
|
| 274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 277 |
+
avail_numel = sum(
|
| 278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 279 |
+
|
| 280 |
+
if debug:
|
| 281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 283 |
+
# not asserting if there is a mismatch due to possible padding
|
| 284 |
+
print(f"Have {avail_numel} numels to process.")
|
| 285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 286 |
+
|
| 287 |
+
# params
|
| 288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 289 |
+
# out-of-core computing solution
|
| 290 |
+
total_numel = 0
|
| 291 |
+
total_params = 0
|
| 292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 293 |
+
offset = 0
|
| 294 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 295 |
+
for name, shape in shapes.items():
|
| 296 |
+
|
| 297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 298 |
+
total_numel += unpartitioned_numel
|
| 299 |
+
total_params += 1
|
| 300 |
+
|
| 301 |
+
if debug:
|
| 302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 304 |
+
offset += unpartitioned_numel
|
| 305 |
+
|
| 306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 310 |
+
align_to = 2 * world_size
|
| 311 |
+
|
| 312 |
+
def zero2_align(x):
|
| 313 |
+
return align_to * math.ceil(x / align_to)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
offset = zero2_align(offset)
|
| 319 |
+
avail_numel = zero2_align(avail_numel)
|
| 320 |
+
|
| 321 |
+
if debug:
|
| 322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 323 |
+
|
| 324 |
+
# Sanity check
|
| 325 |
+
if offset != avail_numel:
|
| 326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 327 |
+
|
| 328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 332 |
+
exclude_frozen_parameters):
|
| 333 |
+
state_dict = OrderedDict()
|
| 334 |
+
|
| 335 |
+
# buffers
|
| 336 |
+
buffers = zero_model_states[0].buffers
|
| 337 |
+
state_dict.update(buffers)
|
| 338 |
+
if debug:
|
| 339 |
+
print(f"added {len(buffers)} buffers")
|
| 340 |
+
|
| 341 |
+
if not exclude_frozen_parameters:
|
| 342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 343 |
+
|
| 344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 345 |
+
|
| 346 |
+
# recover shared parameters
|
| 347 |
+
for pair in zero_model_states[0].shared_params:
|
| 348 |
+
if pair[1] in state_dict:
|
| 349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 350 |
+
|
| 351 |
+
return state_dict
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 355 |
+
remainder = unpartitioned_numel % world_size
|
| 356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 358 |
+
return partitioned_numel, padding_numel
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 363 |
+
return
|
| 364 |
+
|
| 365 |
+
if debug:
|
| 366 |
+
for i in range(world_size):
|
| 367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 369 |
+
|
| 370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 371 |
+
wanted_params = len(frozen_param_shapes)
|
| 372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 376 |
+
|
| 377 |
+
total_params = 0
|
| 378 |
+
total_numel = 0
|
| 379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 380 |
+
total_params += 1
|
| 381 |
+
unpartitioned_numel = shape.numel()
|
| 382 |
+
total_numel += unpartitioned_numel
|
| 383 |
+
|
| 384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 386 |
+
|
| 387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 388 |
+
|
| 389 |
+
if debug:
|
| 390 |
+
print(
|
| 391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 398 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 402 |
+
|
| 403 |
+
# merge list of dicts, preserving order
|
| 404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 405 |
+
|
| 406 |
+
if debug:
|
| 407 |
+
for i in range(world_size):
|
| 408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 409 |
+
|
| 410 |
+
wanted_params = len(param_shapes)
|
| 411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 412 |
+
# not asserting if there is a mismatch due to possible padding
|
| 413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 416 |
+
|
| 417 |
+
# params
|
| 418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 419 |
+
# out-of-core computing solution
|
| 420 |
+
offset = 0
|
| 421 |
+
total_numel = 0
|
| 422 |
+
total_params = 0
|
| 423 |
+
for name, shape in param_shapes.items():
|
| 424 |
+
|
| 425 |
+
unpartitioned_numel = shape.numel()
|
| 426 |
+
total_numel += unpartitioned_numel
|
| 427 |
+
total_params += 1
|
| 428 |
+
|
| 429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 430 |
+
|
| 431 |
+
if debug:
|
| 432 |
+
print(
|
| 433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
# XXX: memory usage doubles here
|
| 437 |
+
state_dict[name] = torch.cat(
|
| 438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 440 |
+
offset += partitioned_numel
|
| 441 |
+
|
| 442 |
+
offset *= world_size
|
| 443 |
+
|
| 444 |
+
# Sanity check
|
| 445 |
+
if offset != avail_numel:
|
| 446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 447 |
+
|
| 448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 452 |
+
exclude_frozen_parameters):
|
| 453 |
+
state_dict = OrderedDict()
|
| 454 |
+
|
| 455 |
+
# buffers
|
| 456 |
+
buffers = zero_model_states[0].buffers
|
| 457 |
+
state_dict.update(buffers)
|
| 458 |
+
if debug:
|
| 459 |
+
print(f"added {len(buffers)} buffers")
|
| 460 |
+
|
| 461 |
+
if not exclude_frozen_parameters:
|
| 462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 463 |
+
|
| 464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 465 |
+
|
| 466 |
+
# recover shared parameters
|
| 467 |
+
for pair in zero_model_states[0].shared_params:
|
| 468 |
+
if pair[1] in state_dict:
|
| 469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 470 |
+
|
| 471 |
+
return state_dict
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 475 |
+
"""
|
| 476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 478 |
+
via a model hub.
|
| 479 |
+
|
| 480 |
+
Args:
|
| 481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 484 |
+
|
| 485 |
+
Returns:
|
| 486 |
+
- pytorch ``state_dict``
|
| 487 |
+
|
| 488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 490 |
+
the checkpoint.
|
| 491 |
+
|
| 492 |
+
A typical usage might be ::
|
| 493 |
+
|
| 494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 495 |
+
# do the training and checkpoint saving
|
| 496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 497 |
+
model = model.cpu() # move to cpu
|
| 498 |
+
model.load_state_dict(state_dict)
|
| 499 |
+
# submit to model hub or save the model to share with others
|
| 500 |
+
|
| 501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 504 |
+
|
| 505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 506 |
+
|
| 507 |
+
"""
|
| 508 |
+
if tag is None:
|
| 509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 510 |
+
if os.path.isfile(latest_path):
|
| 511 |
+
with open(latest_path, 'r') as fd:
|
| 512 |
+
tag = fd.read().strip()
|
| 513 |
+
else:
|
| 514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 515 |
+
|
| 516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 517 |
+
|
| 518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 520 |
+
|
| 521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
| 525 |
+
"""
|
| 526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 528 |
+
|
| 529 |
+
Args:
|
| 530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 534 |
+
"""
|
| 535 |
+
|
| 536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 538 |
+
torch.save(state_dict, output_file)
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 542 |
+
"""
|
| 543 |
+
1. Put the provided model to cpu
|
| 544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 545 |
+
3. Load it into the provided model
|
| 546 |
+
|
| 547 |
+
Args:
|
| 548 |
+
- ``model``: the model object to update
|
| 549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 551 |
+
|
| 552 |
+
Returns:
|
| 553 |
+
- ``model`: modified model
|
| 554 |
+
|
| 555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 557 |
+
conveniently placed for you in the checkpoint folder.
|
| 558 |
+
|
| 559 |
+
A typical usage might be ::
|
| 560 |
+
|
| 561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 563 |
+
# submit to model hub or save the model to share with others
|
| 564 |
+
|
| 565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 568 |
+
|
| 569 |
+
"""
|
| 570 |
+
logger.info(f"Extracting fp32 weights")
|
| 571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 572 |
+
|
| 573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 574 |
+
model = model.cpu()
|
| 575 |
+
model.load_state_dict(state_dict, strict=False)
|
| 576 |
+
|
| 577 |
+
return model
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
if __name__ == "__main__":
|
| 581 |
+
|
| 582 |
+
parser = argparse.ArgumentParser()
|
| 583 |
+
parser.add_argument("checkpoint_dir",
|
| 584 |
+
type=str,
|
| 585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 586 |
+
parser.add_argument(
|
| 587 |
+
"output_file",
|
| 588 |
+
type=str,
|
| 589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 590 |
+
parser.add_argument("-t",
|
| 591 |
+
"--tag",
|
| 592 |
+
type=str,
|
| 593 |
+
default=None,
|
| 594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 597 |
+
args = parser.parse_args()
|
| 598 |
+
|
| 599 |
+
debug = args.debug
|
| 600 |
+
|
| 601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 602 |
+
args.output_file,
|
| 603 |
+
tag=args.tag,
|
| 604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|