File size: 39,286 Bytes
44ca2cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 |
import math
from typing import Dict, List, Optional, Tuple, Union
import PIL.Image
import numpy as np
import torch
from flash_attn import flash_attn_varlen_func
from flash_attn.layers.rotary import apply_rotary_emb
from torch import Tensor, nn
from torch.nn import functional as F
from transformers import (
AutoConfig,
AutoImageProcessor,
AutoModel,
AutoModelForCausalLM,
AutoTokenizer,
)
from transformers.activations import ACT2FN
from transformers.generation.utils import GenerateOutput
from transformers.modeling_outputs import BaseModelOutputWithNoAttention
from transformers.modeling_utils import PreTrainedModel
from .configuration_ovis2_5 import Siglip2NavitConfig, Ovis2_5_Config
IMAGE_PLACEHOLDER = "<image>"
IMAGE_PLACEHOLDER_ID = -200
VIDEO_PLACEHOLDER = "<video>"
VIDEO_PLACEHOLDER_ID = -201
VISUAL_ATOM_ID = -300
INDICATOR_IDS = [-301, -302, -303, -304]
# copied from qwen2.5-vl
class VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, seqlen: int) -> torch.Tensor:
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
freqs = torch.outer(seq, self.inv_freq)
return freqs
class Siglip2VisionEmbeddings(nn.Module):
def __init__(self, config: Siglip2NavitConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.patch_size = config.patch_size
self.image_size = config.image_size
self.num_patches = config.num_patches
self.preserve_original_pe = config.preserve_original_pe
self.hidden_stride = config.hidden_stride
# siglip2 naflex
if self.num_patches > 0:
self.patch_embedding = nn.Linear(
in_features=config.num_channels * self.patch_size * self.patch_size,
out_features=self.embed_dim,
)
if self.preserve_original_pe:
self.position_embedding_size = int(self.num_patches**0.5)
self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim)
else:
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
if self.preserve_original_pe:
self.num_patches = (self.image_size // self.patch_size) ** 2
self.position_embedding_size = self.image_size // self.patch_size
self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim)
@staticmethod
def resize_positional_embeddings(
positional_embeddings: torch.Tensor,
spatial_shapes: torch.LongTensor,
max_length: int,
) -> torch.Tensor:
"""
Resize positional embeddings to image-specific size and pad to a fixed size.
Args:
positional_embeddings (`torch.Tensor`):
Position embeddings of shape (height, width, embed_dim)
spatial_shapes (`torch.LongTensor`):
Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to
max_length (`int`):
Maximum length of the positional embeddings to pad resized positional embeddings to
Returns:
`torch.Tensor`: Embeddings of shape (batch_size, max_length, embed_dim)
"""
batch_size = spatial_shapes.shape[0]
embed_dim = positional_embeddings.shape[-1]
source_dtype = positional_embeddings.dtype
resulted_positional_embeddings = torch.empty(
(batch_size, max_length, embed_dim),
device=positional_embeddings.device,
dtype=source_dtype,
)
# (height, width, embed_dim) -> (1, embed_dim, height, width) for interpolation
positional_embeddings = positional_embeddings.permute(2, 0, 1).unsqueeze(0)
# Upcast to float32 on CPU because antialias is not supported for bfloat16/float16 on CPU
if positional_embeddings.device.type == "cpu":
positional_embeddings = positional_embeddings.to(torch.float32)
for i in range(batch_size):
# (1, dim, height, width) -> (1, dim, target_height, target_width)
height, width = spatial_shapes[i]
resized_embeddings = F.interpolate(
positional_embeddings,
size=(height, width),
mode="bilinear",
align_corners=False,
antialias=True,
)
# (1, dim, target_height, target_width) -> (target_height * target_width, dim)
resized_embeddings = resized_embeddings.reshape(embed_dim, height * width).transpose(0, 1)
# Cast to original dtype
resized_embeddings = resized_embeddings.to(source_dtype)
resulted_positional_embeddings[i, : height * width] = resized_embeddings
resulted_positional_embeddings[i, height * width :] = resized_embeddings[0]
return resulted_positional_embeddings
def forward(self, pixel_values: torch.FloatTensor,
grid_thws: Optional[torch.LongTensor] = None) -> torch.Tensor:
"""
Args:
pixel_values (`torch.FloatTensor`):
Pixel values of shape (num_patches, num_channels * temporal_patch_size * patch_size * patch_size)
grid_thws: (`torch.LongTensor`):
grid shape (num_patches, 3)
"""
# Apply patch embeddings to already patchified pixel values
target_dtype = self.patch_embedding.weight.dtype
if isinstance(self.patch_embedding, nn.Linear):
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
elif isinstance(self.patch_embedding, nn.Conv2d):
pixel_values = pixel_values.view(-1, self.config.num_channels * self.config.temporal_patch_size, self.patch_size,
self.patch_size)
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
patch_embeds = patch_embeds.reshape(-1, self.embed_dim)
if self.preserve_original_pe:
assert grid_thws is not None
pos_embed_new = torch.zeros_like(patch_embeds)
ori_h = ori_w = self.position_embedding_size
positional_embeddings = self.position_embedding.weight.reshape(
self.position_embedding_size, self.position_embedding_size, -1
).unsqueeze(0).permute(0,3,1,2)
# pos_embed = self.pos_embed.reshape(1, ori_h, ori_w, -1).permute(0, 3, 1, 2)
cnt = 0
for t, h, w in grid_thws:
thw = t * h * w
pe = F.interpolate(positional_embeddings, size=(h, w), mode='bicubic', align_corners=False)
pe = pe.permute(0, 2, 3, 1).reshape(1, h * w, -1)
pe = pe[0].repeat(t, 1)
pe = pe.reshape(t, h // self.hidden_stride, self.hidden_stride, w // self.hidden_stride,
self.hidden_stride, -1)
pe = pe.permute(0, 1, 3, 2, 4, 5).reshape(thw, -1)
pos_embed_new[cnt:cnt + thw] = pe
cnt += thw
patch_embeds = patch_embeds + pos_embed_new
return patch_embeds
# copied from qwen2.5-vl
def apply_rotary_pos_emb_flashatt(
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
cos = cos.chunk(2, dim=-1)[0].contiguous()
sin = sin.chunk(2, dim=-1)[0].contiguous()
q_embed = apply_rotary_emb(q.float(), cos.float(), sin.float()).type_as(q)
k_embed = apply_rotary_emb(k.float(), cos.float(), sin.float()).type_as(k)
return q_embed, k_embed
class Siglip2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.is_causal = False
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.use_rope = config.use_rope
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
seq_length, embed_dim = hidden_states.shape
queries = self.q_proj(hidden_states)
keys = self.k_proj(hidden_states)
values = self.v_proj(hidden_states)
queries = queries.view(seq_length, self.num_heads, self.head_dim)
keys = keys.view(seq_length, self.num_heads, self.head_dim)
values = values.view(seq_length, self.num_heads, self.head_dim)
if self.use_rope:
cos, sin = position_embeddings
queries, keys = apply_rotary_pos_emb_flashatt(queries.unsqueeze(0), keys.unsqueeze(0), cos, sin)
queries = queries.squeeze(0)
keys = keys.squeeze(0)
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
attn_output = flash_attn_varlen_func(queries, keys, values, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
seq_length, -1
)
attn_output = self.out_proj(attn_output)
return attn_output
class Siglip2MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class Siglip2EncoderLayer(nn.Module):
def __init__(self, config: Siglip2NavitConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.self_attn = Siglip2Attention(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = Siglip2MLP(config)
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
position_embeddings: torch.Tensor
) -> tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.self_attn(
hidden_states=hidden_states,
cu_seqlens=cu_seqlens,
position_embeddings=position_embeddings
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Siglip2Encoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`Siglip2EncoderLayer`].
Args:
config: Siglip2NavitConfig
"""
def __init__(self, config: Siglip2NavitConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([Siglip2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
self.rotary_pos_emb = VisionRotaryEmbedding(config.hidden_size // config.num_attention_heads // 2)
self.patch_size = config.patch_size
self.hidden_stride = config.hidden_stride
self.window_size = config.window_size
self.spatial_merge_unit = config.hidden_stride * config.hidden_stride
self.fullatt_block_indexes = None if config.fullatt_block_indexes is None else [int(i) for i in config.fullatt_block_indexes.split('|')]
# copied from qwen2.5_vl
def rot_pos_emb(self, grid_thw):
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.hidden_stride,
self.hidden_stride,
w // self.hidden_stride,
self.hidden_stride,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
hpos_ids = hpos_ids.flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.hidden_stride,
self.hidden_stride,
w // self.hidden_stride,
self.hidden_stride,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
wpos_ids = wpos_ids.flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def get_window_index(self, grid_thw):
window_index: list = []
cu_window_seqlens: list = [0]
window_index_id = 0
vit_merger_window_size = self.window_size // self.hidden_stride // self.patch_size # patch (after merge) number in each window
for grid_t, grid_h, grid_w in grid_thw:
llm_grid_h, llm_grid_w = (
grid_h // self.hidden_stride, # number of patch after merge
grid_w // self.hidden_stride,
)
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
index_padded = index_padded.reshape(
grid_t,
num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size,
)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t,
num_windows_h * num_windows_w,
vit_merger_window_size,
vit_merger_window_size,
)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
window_index.append(index_new + window_index_id)
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1]
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
window_index = torch.cat(window_index, dim=0)
return window_index, cu_window_seqlens
# Ignore copy
def forward(
self,
inputs_embeds,
grid_thws: torch.Tensor,
output_hidden_states: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
rotary_pos_emb = self.rot_pos_emb(grid_thws)
window_index, cu_window_seqlens = self.get_window_index(grid_thws)
cu_window_seqlens = torch.tensor(
cu_window_seqlens,
device=inputs_embeds.device,
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
seq_len, _ = inputs_embeds.size()
inputs_embeds = inputs_embeds.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
inputs_embeds = inputs_embeds[window_index, :, :]
inputs_embeds = inputs_embeds.reshape(seq_len, -1)
rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
position_embeddings = (emb.cos(), emb.sin())
cu_seqlens = torch.repeat_interleave(grid_thws[:, 1] * grid_thws[:, 2], grid_thws[:, 0]).cumsum(
dim=0,
# Select dtype based on the following factors:
# - FA2 requires that cu_seqlens_q must have dtype int32
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
# See https://github.com/huggingface/transformers/pull/34852 for more information
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
reverse_indices = torch.argsort(window_index)
encoder_states = () if output_hidden_states else None
hidden_states = inputs_embeds
for index, block in enumerate(self.layers):
if self.fullatt_block_indexes is None or index in self.fullatt_block_indexes:
cu_seqlens_tmp = cu_seqlens
else:
cu_seqlens_tmp = cu_window_seqlens
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(block.__call__, hidden_states, cu_seqlens_tmp, position_embeddings)
else:
hidden_states = block(hidden_states, cu_seqlens_tmp, position_embeddings)
if output_hidden_states:
hidden_states_ = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
encoder_states += (hidden_states_[reverse_indices, :].reshape(seq_len, -1),)
# tokens = self.post_trunk_norm(tokens)
hidden_states = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
hidden_states = hidden_states[reverse_indices, :].reshape(seq_len, -1)
return hidden_states, encoder_states
class Siglip2VisionTransformer(nn.Module):
def __init__(self, config: Siglip2NavitConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = Siglip2VisionEmbeddings(config)
self.encoder = Siglip2Encoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
def forward(
self,
pixel_values: torch.FloatTensor,
grid_thws: torch.LongTensor,
output_hidden_states: Optional[bool] = True,
return_dict: Optional[bool] = True,
) -> Union[
Tuple[torch.Tensor],
Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
BaseModelOutputWithNoAttention,
]:
r"""
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
Tensor containing the spatial dimensions (height, width) of the input images.
"""
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
# output_hidden_states = (
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
# )
hidden_states = self.embeddings(pixel_values, grid_thws)
last_hidden_state, hidden_states = self.encoder(hidden_states, grid_thws, output_hidden_states)
last_hidden_state = self.post_layernorm(last_hidden_state)
if not return_dict:
output = (last_hidden_state,)
output += (hidden_states,) if output_hidden_states else ()
return output
return BaseModelOutputWithNoAttention(
last_hidden_state=last_hidden_state,
hidden_states=hidden_states
)
class Siglip2PreTrainedModel(PreTrainedModel):
config_class = Siglip2NavitConfig
base_model_prefix = "siglip2_navit"
supports_gradient_checkpointing = True
_no_split_modules = [
"Siglip2VisionEmbeddings",
"Siglip2EncoderLayer",
]
_supports_flash_attn_2 = True
_supports_sdpa = False
_supports_flex_attn = False
_supports_attention_backend = True
class Siglip2NavitModel(Siglip2PreTrainedModel):
config_class = Siglip2NavitConfig
main_input_name = "pixel_values"
def __init__(self, config: Siglip2NavitConfig):
super().__init__(config)
self.vision_model = Siglip2VisionTransformer(config)
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
def forward(
self,
pixel_values: torch.FloatTensor,
grid_thws: torch.LongTensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[
Tuple[torch.Tensor],
Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
BaseModelOutputWithNoAttention,
]:
if output_hidden_states is None:
output_hidden_states = self.config.output_hidden_states
if return_dict is None:
return_dict = self.config.use_return_dict
return self.vision_model(
pixel_values=pixel_values,
grid_thws=grid_thws,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class VisualEmbedding(torch.nn.Embedding):
"""
A visual embedding layer that can handle both discrete token IDs (long) and continuous
soft-token probabilities (float).
"""
def forward(self, visual_tokens: Tensor) -> Tensor:
if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]:
return super().forward(visual_tokens)
# Handle soft tokens (probabilities) by matrix multiplication with the embedding weight
return torch.matmul(visual_tokens, self.weight)
class VisualTokenizer(torch.nn.Module):
"""
Tokenizes images or videos into a sequence of continuous visual tokens.
"""
def __init__(self, vit, visual_vocab_size, image_processor_name_or_path, *args, **kwargs):
super().__init__(*args, **kwargs)
self.vit = vit
self.image_processor = AutoImageProcessor.from_pretrained(image_processor_name_or_path, do_center_crop=False)
head_dim = visual_vocab_size - len(INDICATOR_IDS)
self.head = torch.nn.Sequential(
torch.nn.Linear(self.vit.config.hidden_size * self.vit.config.hidden_stride ** 2, head_dim, bias=False),
torch.nn.LayerNorm(head_dim)
)
def _encode(self, pixel_values, grid_thws):
output = self.vit(pixel_values, grid_thws, output_hidden_states=True, return_dict=True)
features = output.hidden_states[-1]
seq_len, _ = features.shape
features = features.reshape(seq_len // (self.vit.config.hidden_stride ** 2), -1)
return features
# Adapted from qwen2_vl
@staticmethod
def smart_resize(
height: int, width: int, factor: int = 28, min_pixels: int = 448 * 448, max_pixels: int = 1344 * 1792
):
"""Rescales the image so that the following conditions are met:
1. Both dimensions are divisible by 'factor'.
2. The total number of pixels is within ['min_pixels', 'max_pixels'].
3. The aspect ratio is maintained as closely as possible.
"""
if height < factor or width < factor:
if height < width:
width = round(factor / height * width)
height = factor
else:
height = round(factor / width * height)
width = factor
elif max(height, width) / min(height, width) > 200:
if height > width:
height = 200 * width
else:
width = 200 * height
h_bar = round(height / factor) * factor
w_bar = round(width / factor) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = math.floor(height / beta / factor) * factor
w_bar = math.floor(width / beta / factor) * factor
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
return h_bar, w_bar
def preprocess(
self,
image: Optional[PIL.Image.Image] = None,
video: Optional[List[PIL.Image.Image]] = None,
min_pixels: Optional[int] = None,
max_pixels: Optional[int] = None
):
patch_size = self.vit.config.patch_size
temporal_patch_size = self.vit.config.temporal_patch_size
hidden_stride = self.vit.config.hidden_stride
assert (image is None) ^ (video is None), "Invalid input: expect either image or video"
if image is not None:
images = [image]
else:
images = video
images = [image.convert("RGB") if image.mode != 'RGB' else image for image in images]
width, height = images[0].size
processed_images = []
for image in images:
resized_height, resized_width = self.smart_resize(
height,
width,
factor=patch_size * hidden_stride,
min_pixels=min_pixels,
max_pixels=max_pixels,
)
new_size = dict(height=resized_height, width=resized_width)
new_image = self.image_processor.preprocess(image, size=new_size, return_tensors="np")['pixel_values'][0]
processed_images.append(new_image)
patches = np.array(processed_images)
if patches.shape[0] % temporal_patch_size != 0:
repeats = np.repeat(patches[-1][np.newaxis], temporal_patch_size - 1, axis=0)
patches = np.concatenate([patches, repeats], axis=0)
channel = patches.shape[1]
grid_t = patches.shape[0] // temporal_patch_size
grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
grid_thw = torch.tensor([[grid_t, grid_h, grid_w]])
patches = patches.reshape(
grid_t, temporal_patch_size, channel,
grid_h // hidden_stride, hidden_stride, patch_size,
grid_w // hidden_stride, hidden_stride, patch_size,
)
patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
flatten_patches = patches.reshape(
grid_t * grid_h * grid_w, channel * temporal_patch_size * patch_size * patch_size
)
flatten_patches = torch.tensor(flatten_patches)
return flatten_patches, grid_thw
def forward(
self, pixel_values, grid_thws
) -> torch.Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
features = self._encode(pixel_values, grid_thws)
logits = self.head(features)
tokens = torch.softmax(logits, dim=-1, dtype=torch.float32).to(logits.dtype)
token_len, _ = tokens.shape
padding_tensor = torch.zeros(size=(token_len, len(INDICATOR_IDS)),
dtype=tokens.dtype,
device=tokens.device,
layout=tokens.layout,
requires_grad=False)
tokens = torch.cat((tokens, padding_tensor), dim=1)
return tokens
class OvisPreTrainedModel(PreTrainedModel):
config_class = Ovis2_5_Config
base_model_prefix = "ovis2_5"
class Ovis2_5(OvisPreTrainedModel):
_supports_flash_attn_2 = True
def __init__(self, config: Ovis2_5_Config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.llm = AutoModelForCausalLM.from_config(self.config.llm_config)
assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
self.visual_tokenizer = VisualTokenizer(vit=AutoModel.from_config(self.config.vit_config),
visual_vocab_size=self.config.visual_vocab_size,
image_processor_name_or_path=self.config.name_or_path)
self.vte = VisualEmbedding(self.config.visual_vocab_size, self.config.hidden_size,
device=self.visual_tokenizer.vit.device, dtype=self.visual_tokenizer.vit.dtype)
indicator_token_indices = torch.arange(
self.config.visual_vocab_size - len(INDICATOR_IDS),
self.config.visual_vocab_size,
dtype=torch.long
)
self.register_buffer("indicator_token_indices", indicator_token_indices, persistent=False)
def _merge_modules(modules_list: tuple):
merged_modules = []
for modules in modules_list:
merged_modules.extend(modules if modules else [])
return merged_modules
# Standard model configurations for parallelism and device placement
self._no_split_modules = _merge_modules(
(self.llm._no_split_modules, self.visual_tokenizer.vit._no_split_modules))
self._skip_keys_device_placement = self.llm._skip_keys_device_placement
self._keep_in_fp32_modules = _merge_modules(
(self.llm._keep_in_fp32_modules, self.visual_tokenizer.vit._keep_in_fp32_modules))
self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.vit.is_parallelizable))
self.supports_gradient_checkpointing = True
def tie_weights(self):
self.llm.tie_weights()
def get_wte(self):
return self.llm.get_input_embeddings()
def forward(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
pixel_values: Optional[torch.Tensor],
grid_thws: Optional[torch.Tensor],
labels: Optional[torch.Tensor] = None,
**kwargs
):
inputs_embeds = self.merge_multimodal(
input_ids=input_ids,
pixel_values=pixel_values,
grid_thws=grid_thws,
)
return self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
def merge_multimodal(
self,
input_ids: torch.Tensor,
pixel_values: Optional[torch.Tensor],
grid_thws: Optional[torch.Tensor],
):
placeholder_token_mask = torch.lt(input_ids, 0)
multimodal_embeds = self.get_wte()(torch.masked_fill(input_ids, placeholder_token_mask, 0))
if pixel_values is not None:
visual_indicator_embeds = self.vte(self.indicator_token_indices).to(
dtype=multimodal_embeds.dtype, device=multimodal_embeds.device
)
visual_tokens = self.visual_tokenizer(pixel_values, grid_thws)
visual_embeds = self.vte(visual_tokens).to(dtype=multimodal_embeds.dtype, device=multimodal_embeds.device)
for i, indicator_id in enumerate(INDICATOR_IDS):
multimodal_embeds[input_ids == indicator_id] = visual_indicator_embeds[i]
multimodal_embeds[input_ids == VISUAL_ATOM_ID] = visual_embeds
return multimodal_embeds
def _merge_inputs(
self, raw_input_ids, placeholder_id, grid_thws, indicator_begin_id, indicator_end_id
):
input_ids = []
prev_index = 0
placeholder_indexes = [i for i, v in enumerate(raw_input_ids) if v == placeholder_id]
for placeholder_index, grid_thw in zip(placeholder_indexes, grid_thws):
input_ids.extend(raw_input_ids[prev_index:placeholder_index])
num_image_atoms = grid_thw.prod().item()
num_image_atoms //= self.visual_tokenizer.vit.config.hidden_stride ** 2
num_image_atoms //= self.visual_tokenizer.vit.config.temporal_patch_size
input_ids.extend([indicator_begin_id] + [VISUAL_ATOM_ID] * num_image_atoms + [indicator_end_id])
prev_index = placeholder_index + 1
input_ids.extend(raw_input_ids[prev_index:])
return input_ids
def _tokenize_with_visual_placeholder(self, text):
placeholder = VIDEO_PLACEHOLDER if VIDEO_PLACEHOLDER in text else IMAGE_PLACEHOLDER
placeholder_id = VIDEO_PLACEHOLDER_ID if VIDEO_PLACEHOLDER in text else IMAGE_PLACEHOLDER_ID
chunks = [self.text_tokenizer(chunk, add_special_tokens=False).input_ids for chunk in text.split(placeholder)]
input_ids = chunks[0]
for chunk in chunks[1:]:
input_ids.append(placeholder_id)
input_ids.extend(chunk)
return input_ids
def preprocess_inputs(
self,
messages: List[Union[str, Dict]],
min_pixels=448 * 448,
max_pixels=1344 * 1792,
add_generation_prompt=True,
enable_thinking=False
):
text = self.text_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=add_generation_prompt,
enable_thinking=enable_thinking
)
input_ids = self._tokenize_with_visual_placeholder(text)
images = []
videos = []
for message in messages:
content = message["content"]
if isinstance(content, list):
images.extend([item["image"] for item in content if item.get("image") is not None])
videos.extend([item["video"] for item in content if item.get("video") is not None])
if images and videos:
raise ValueError(
"Multiple visual input data types detected (both image and video provided). "
"This model supports only one type of visual input data at a time. "
"Please provide either image or video, but not both."
)
pixel_values, grid_thws = None, None
if images:
pixel_values, grid_thws = zip(
*(self.visual_tokenizer.preprocess(image=image, min_pixels=min_pixels, max_pixels=max_pixels)
for image in images)
)
input_ids = self._merge_inputs(
input_ids, IMAGE_PLACEHOLDER_ID, grid_thws, INDICATOR_IDS[0], INDICATOR_IDS[1]
)
pixel_values = torch.cat(pixel_values, dim=0)
grid_thws = torch.cat(grid_thws, dim=0)
elif videos:
assert len(videos) == 1, "only support single video"
pixel_values, grid_thws = self.visual_tokenizer.preprocess(
video=videos[0], min_pixels=min_pixels, max_pixels=max_pixels
)
input_ids = self._merge_inputs(
input_ids, VIDEO_PLACEHOLDER_ID, grid_thws, INDICATOR_IDS[2], INDICATOR_IDS[3]
)
input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
return input_ids, pixel_values, grid_thws
def generate(
self,
inputs: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
attention_mask = torch.ne(inputs, self.text_tokenizer.pad_token_id).to(device=inputs.device)
inputs_embeds = self.merge_multimodal(
input_ids=inputs,
pixel_values=kwargs.pop('pixel_values', None),
grid_thws=kwargs.pop('grid_thws', None)
)
return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs)
AutoConfig.register('siglip2_navit', Siglip2NavitConfig)
AutoModel.register(Siglip2NavitConfig, Siglip2NavitModel)
AutoConfig.register("ovis2_5", Ovis2_5_Config)
AutoModelForCausalLM.register(Ovis2_5_Config, Ovis2_5)
|