|
from typing import Any, Optional, List, Union |
|
|
|
from transformers import Qwen3Config |
|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
__all__ = ["Siglip2NavitConfig", "Ovis2_5_Config"] |
|
|
|
|
|
class Siglip2NavitConfig(PretrainedConfig): |
|
"""This is the configuration class to store the configuration of an [`AIMv2Model`]. |
|
|
|
Instantiating a configuration with the defaults will yield a similar configuration |
|
to that of the [apple/aimv2-large-patch14-224](https://huggingface.co/apple/aimv2-large-patch14-224). |
|
|
|
Args: |
|
hidden_size: Dimension of the hidden representations. |
|
intermediate_size: Dimension of the SwiGLU representations. |
|
num_hidden_layers: Number of hidden layers in the Transformer. |
|
num_attention_heads: Number of attention heads for each attention layer |
|
in the Transformer. |
|
num_channels: Number of input channels. |
|
image_size: Image size. |
|
patch_size: Patch size. |
|
rms_norm_eps: Epsilon value used for the RMS normalization layer. |
|
attention_dropout: Dropout ratio for attention probabilities. |
|
projection_dropout: Dropout ratio for the projection layer after the attention. |
|
qkv_bias: Whether to add a bias to the queries, keys and values. |
|
use_bias: Whether to add a bias in the feed-forward and projection layers. |
|
kwargs: Keyword arguments for the [`PretrainedConfig`]. |
|
""" |
|
|
|
model_type: str = "siglip2_navit" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int = 1024, |
|
intermediate_size: int = 4096, |
|
num_hidden_layers: int = 24, |
|
num_attention_heads: int = 16, |
|
num_channels: int = 3, |
|
num_patches: int = -1, |
|
image_size: int = 512, |
|
patch_size: int = 16, |
|
hidden_act: str="gelu_pytorch_tanh", |
|
layer_norm_eps: float = 1e-6, |
|
attention_dropout: float = 0.0, |
|
hidden_stride: int = 2, |
|
window_size: int = 112, |
|
fullatt_block_indexes: Optional[list] = None, |
|
temporal_patch_size: int = 1, |
|
preserve_original_pe: bool = True, |
|
use_rope: bool = True, |
|
**kwargs: Any, |
|
): |
|
super().__init__(**kwargs) |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.num_patches = num_patches |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.hidden_act = hidden_act |
|
self.attention_dropout = attention_dropout |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_stride = hidden_stride |
|
self.window_size = window_size |
|
self.fullatt_block_indexes = fullatt_block_indexes |
|
self.temporal_patch_size = temporal_patch_size |
|
self.preserve_original_pe = preserve_original_pe |
|
self.use_rope = use_rope |
|
|
|
class Ovis2_5_Config(PretrainedConfig): |
|
model_type = "ovis2_5" |
|
sub_configs = dict(llm_config=Qwen3Config, vit_config=Siglip2NavitConfig) |
|
|
|
def __init__(self, |
|
llm_config: Optional[Union[Qwen3Config, dict]] = None, |
|
vit_config: Optional[Union[Siglip2NavitConfig, dict]] = None, |
|
visual_vocab_size=65536, |
|
hidden_size=None, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
if isinstance(llm_config, dict): |
|
llm_config = Qwen3Config(**llm_config) |
|
self.llm_config = llm_config |
|
if isinstance(vit_config, dict): |
|
vit_config = Siglip2NavitConfig(**vit_config) |
|
self.vit_config = vit_config |
|
self.visual_vocab_size = visual_vocab_size |
|
self.hidden_size = hidden_size |
|
if kwargs.get('attn_implementation'): |
|
self.llm_config._attn_implementation = kwargs['attn_implementation'] |
|
self.vit_config._attn_implementation = kwargs['attn_implementation'] |
|
|