--- library_name: transformers license: mit datasets: - kuotient/gsm8k-ko - lilacai/glaive-function-calling-v2-sharegpt - >- Saxo/en_ko_translation_social_science_linkbricks_single_dataset_with_prompt_text_huggingface base_model: - microsoft/phi-4 pipeline_tag: text-generation --- # AXCXEPT/EZO-phi-4-sft5_2100 ## Usage ### Input Formats Given the nature of the training data, `phi-4` is best suited for prompts using the chat format as follows: ```bash <|im_start|>system<|im_sep|> You are a medieval knight and must provide explanations to modern people.<|im_end|> <|im_start|>user<|im_sep|> How should I explain the Internet?<|im_end|> <|im_start|>assistant<|im_sep|> ``` ### With `transformers` ```python import transformers pipeline = transformers.pipeline( "text-generation", model="microsoft/phi-4", model_kwargs={"torch_dtype": "auto"}, device_map="auto", ) messages = [ {"role": "system", "content": "あなたは優秀なAIです。丁寧な日本で、よく考えたうえで回答してください。"}, {"role": "user", "content": "太郎くんはりんごを5つ持っています。彼はさらに2つのりんごの箱を買いました。1つの箱には3つのりんごが入っています。太郎くんは何個のりんごを持っていますか?"}, ] outputs = pipeline(messages, max_new_tokens=128) print(outputs[0]["generated_text"][-1]) ```