import argparse import cv2 import numpy as np import os import onnxruntime as ort from axengine import InferenceSession import numpy as np import cv2 import argparse import os.path as osp from loguru import logger from numpy import ndarray import pickle as pkl import torch import torch.nn.functional as F from cropper import Cropper import imageio import subprocess from utils.timer import Timer from typing import Union from scipy.spatial import ConvexHull # pylint: disable=E0401,E0611 appearance_feature_extractor, motion_extractor, warping_module, spade_generator, stitching_retargeting_module = None, None, None, None, None def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser( prog="LivePortrait", description="LivePortrait: A Real-time 3D Live Portrait Animation System" ) parser.add_argument( "--source", type=str, required=True, help="Path to source image.", ) parser.add_argument( "--driving", type=str, required=True, help="Path to driving image.", ) parser.add_argument( "--models", type=str, required=True, help="Path to onnx models.", ) parser.add_argument( "--output-dir", type=str, default="./output", help="Path to infer results.", ) return parser.parse_args() def images2video(images, wfp, **kwargs): fps = kwargs.get('fps', 30) video_format = kwargs.get('format', 'mp4') # default is mp4 format codec = kwargs.get('codec', 'libx264') # default is libx264 encoding quality = kwargs.get('quality') # video quality pixelformat = kwargs.get('pixelformat', 'yuv420p') # video pixel format image_mode = kwargs.get('image_mode', 'rgb') macro_block_size = kwargs.get('macro_block_size', 2) ffmpeg_params = ['-crf', str(kwargs.get('crf', 18))] writer = imageio.get_writer( wfp, fps=fps, format=video_format, codec=codec, quality=quality, ffmpeg_params=ffmpeg_params, pixelformat=pixelformat, macro_block_size=macro_block_size ) n = len(images) for i in range(n): if image_mode.lower() == 'bgr': writer.append_data(images[i][..., ::-1]) else: writer.append_data(images[i]) writer.close() def has_audio_stream(video_path: str) -> bool: """ Check if the video file contains an audio stream. :param video_path: Path to the video file :return: True if the video contains an audio stream, False otherwise """ if osp.isdir(video_path): return False cmd = [ 'ffprobe', '-v', 'error', '-select_streams', 'a', '-show_entries', 'stream=codec_type', '-of', 'default=noprint_wrappers=1:nokey=1', f'"{video_path}"' ] try: # result = subprocess.run(cmd, capture_output=True, text=True) result = exec_cmd(' '.join(cmd)) if result.returncode != 0: logger.info(f"Error occurred while probing video: {result.stderr}") return False # Check if there is any output from ffprobe command return bool(result.stdout.strip()) except Exception as e: logger.info( f"Error occurred while probing video: {video_path}, " "you may need to install ffprobe! (https://ffmpeg.org/download.html) " "Now set audio to false!", style="bold red" ) return False def tensor_to_numpy(data: Union[np.ndarray, torch.Tensor]) -> np.ndarray: """transform torch.Tensor into numpy.ndarray""" if isinstance(data, torch.Tensor): return data.data.cpu().numpy() return data def calc_motion_multiplier( kp_source: Union[np.ndarray, torch.Tensor], kp_driving_initial: Union[np.ndarray, torch.Tensor] ) -> float: """calculate motion_multiplier based on the source image and the first driving frame""" kp_source_np = tensor_to_numpy(kp_source) kp_driving_initial_np = tensor_to_numpy(kp_driving_initial) source_area = ConvexHull(kp_source_np.squeeze(0)).volume driving_area = ConvexHull(kp_driving_initial_np.squeeze(0)).volume motion_multiplier = np.sqrt(source_area) / np.sqrt(driving_area) # motion_multiplier = np.cbrt(source_area) / np.cbrt(driving_area) return motion_multiplier def load_video(video_info, n_frames=-1): reader = imageio.get_reader(video_info, "ffmpeg") ret = [] for idx, frame_rgb in enumerate(reader): if n_frames > 0 and idx >= n_frames: break ret.append(frame_rgb) reader.close() return ret def fast_check_ffmpeg(): try: subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True) return True except: return False def is_video(file_path): if file_path.lower().endswith((".mp4", ".mov", ".avi", ".webm")) or osp.isdir(file_path): return True return False def is_image(file_path): image_extensions = ('.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp') return file_path.lower().endswith(image_extensions) def get_fps(filepath, default_fps=25): try: fps = cv2.VideoCapture(filepath).get(cv2.CAP_PROP_FPS) if fps in (0, None): fps = default_fps except Exception as e: logger.info(e) fps = default_fps return fps def calculate_distance_ratio(lmk: np.ndarray, idx1: int, idx2: int, idx3: int, idx4: int, eps: float = 1e-6) -> np.ndarray: return (np.linalg.norm(lmk[:, idx1] - lmk[:, idx2], axis=1, keepdims=True) / (np.linalg.norm(lmk[:, idx3] - lmk[:, idx4], axis=1, keepdims=True) + eps)) def calc_eye_close_ratio(lmk: np.ndarray, target_eye_ratio: np.ndarray = None) -> np.ndarray: lefteye_close_ratio = calculate_distance_ratio(lmk, 6, 18, 0, 12) righteye_close_ratio = calculate_distance_ratio(lmk, 30, 42, 24, 36) if target_eye_ratio is not None: return np.concatenate([lefteye_close_ratio, righteye_close_ratio, target_eye_ratio], axis=1) else: return np.concatenate([lefteye_close_ratio, righteye_close_ratio], axis=1) def calc_lip_close_ratio(lmk: np.ndarray) -> np.ndarray: return calculate_distance_ratio(lmk, 90, 102, 48, 66) def concat_frames(driving_image_lst, source_image_lst, I_p_lst): # TODO: add more concat style, e.g., left-down corner driving out_lst = [] h, w, _ = I_p_lst[0].shape source_image_resized_lst = [cv2.resize(img, (w, h)) for img in source_image_lst] for idx, _ in enumerate(I_p_lst): I_p = I_p_lst[idx] source_image_resized = source_image_resized_lst[idx] if len(source_image_lst) > 1 else source_image_resized_lst[0] if driving_image_lst is None: out = np.hstack((source_image_resized, I_p)) else: driving_image = driving_image_lst[idx] driving_image_resized = cv2.resize(driving_image, (w, h)) out = np.hstack((driving_image_resized, source_image_resized, I_p)) out_lst.append(out) return out_lst def concat_feat(kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: """ kp_source: (bs, k, 3) kp_driving: (bs, k, 3) Return: (bs, 2k*3) """ bs_src = kp_source.shape[0] bs_dri = kp_driving.shape[0] assert bs_src == bs_dri, 'batch size must be equal' feat = torch.cat([kp_source.view(bs_src, -1), kp_driving.view(bs_dri, -1)], dim=1) return feat DTYPE = np.float32 CV2_INTERP = cv2.INTER_LINEAR def _transform_img(img, M, dsize, flags=CV2_INTERP, borderMode=None): """ conduct similarity or affine transformation to the image, do not do border operation! img: M: 2x3 matrix or 3x3 matrix dsize: target shape (width, height) """ if isinstance(dsize, tuple) or isinstance(dsize, list): _dsize = tuple(dsize) else: _dsize = (dsize, dsize) if borderMode is not None: return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags, borderMode=borderMode, borderValue=(0, 0, 0)) else: return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags) def prepare_paste_back(mask_crop, crop_M_c2o, dsize): """prepare mask for later image paste back """ mask_ori = _transform_img(mask_crop, crop_M_c2o, dsize) mask_ori = mask_ori.astype(np.float32) / 255. return mask_ori def paste_back(img_crop, M_c2o, img_ori, mask_ori): """paste back the image """ dsize = (img_ori.shape[1], img_ori.shape[0]) result = _transform_img(img_crop, M_c2o, dsize=dsize) result = np.clip(mask_ori * result + (1 - mask_ori) * img_ori, 0, 255).astype(np.uint8) return result def prefix(filename): """a.jpg -> a""" pos = filename.rfind(".") if pos == -1: return filename return filename[:pos] def basename(filename): """a/b/c.jpg -> c""" return prefix(osp.basename(filename)) def mkdir(d, log=False): # return self-assined `d`, for one line code if not osp.exists(d): os.makedirs(d, exist_ok=True) if log: logger.info(f"Make dir: {d}") return d def dct2device(dct: dict, device): for key in dct: if isinstance(dct[key], torch.Tensor): dct[key] = dct[key].to(device) else: dct[key] = torch.tensor(dct[key]).to(device) return dct PI = np.pi def headpose_pred_to_degree(pred): """ pred: (bs, 66) or (bs, 1) or others """ if pred.ndim > 1 and pred.shape[1] == 66: # NOTE: note that the average is modified to 97.5 device = pred.device idx_tensor = [idx for idx in range(0, 66)] idx_tensor = torch.FloatTensor(idx_tensor).to(device) pred = F.softmax(pred, dim=1) degree = torch.sum(pred*idx_tensor, axis=1) * 3 - 97.5 return degree return pred def get_rotation_matrix(pitch_, yaw_, roll_): """ the input is in degree """ # transform to radian pitch = pitch_ / 180 * PI yaw = yaw_ / 180 * PI roll = roll_ / 180 * PI device = pitch.device if pitch.ndim == 1: pitch = pitch.unsqueeze(1) if yaw.ndim == 1: yaw = yaw.unsqueeze(1) if roll.ndim == 1: roll = roll.unsqueeze(1) # calculate the euler matrix bs = pitch.shape[0] ones = torch.ones([bs, 1]).to(device) zeros = torch.zeros([bs, 1]).to(device) x, y, z = pitch, yaw, roll rot_x = torch.cat([ ones, zeros, zeros, zeros, torch.cos(x), -torch.sin(x), zeros, torch.sin(x), torch.cos(x) ], dim=1).reshape([bs, 3, 3]) rot_y = torch.cat([ torch.cos(y), zeros, torch.sin(y), zeros, ones, zeros, -torch.sin(y), zeros, torch.cos(y) ], dim=1).reshape([bs, 3, 3]) rot_z = torch.cat([ torch.cos(z), -torch.sin(z), zeros, torch.sin(z), torch.cos(z), zeros, zeros, zeros, ones ], dim=1).reshape([bs, 3, 3]) rot = rot_z @ rot_y @ rot_x return rot.permute(0, 2, 1) # transpose def make_abs_path(fn): return osp.join(osp.dirname(osp.realpath(__file__)), fn) def load_image_rgb(image_path: str): if not osp.exists(image_path): raise FileNotFoundError(f"Image not found: {image_path}") img = cv2.imread(image_path, cv2.IMREAD_COLOR) return cv2.cvtColor(img, cv2.COLOR_BGR2RGB) def resize_to_limit(img: np.ndarray, max_dim=1920, division=2): """ ajust the size of the image so that the maximum dimension does not exceed max_dim, and the width and the height of the image are multiples of n. :param img: the image to be processed. :param max_dim: the maximum dimension constraint. :param n: the number that needs to be multiples of. :return: the adjusted image. """ h, w = img.shape[:2] # ajust the size of the image according to the maximum dimension if max_dim > 0 and max(h, w) > max_dim: if h > w: new_h = max_dim new_w = int(w * (max_dim / h)) else: new_w = max_dim new_h = int(h * (max_dim / w)) img = cv2.resize(img, (new_w, new_h)) # ensure that the image dimensions are multiples of n division = max(division, 1) new_h = img.shape[0] - (img.shape[0] % division) new_w = img.shape[1] - (img.shape[1] % division) if new_h == 0 or new_w == 0: # when the width or height is less than n, no need to process return img if new_h != img.shape[0] or new_w != img.shape[1]: img = img[:new_h, :new_w] return img def preprocess(input_data): img_rgb = load_image_rgb(input_data) img_rgb = resize_to_limit(img_rgb) return [img_rgb] def postprocess(output_data): # Implement your postprocessing steps here # For example, you might convert the output to a specific format return output_data def infer(model, input_data): input_name = model.get_inputs()[0].name output_name = model.get_outputs()[0].name input_data = preprocess(input_data) # rgb, resize & limit result = model.run([output_name], {input_name: input_data}) return postprocess(result) def partial_fields(target_class, kwargs): return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)}) def calc_ratio(lmk_lst): input_eye_ratio_lst = [] input_lip_ratio_lst = [] for lmk in lmk_lst: # for eyes retargeting input_eye_ratio_lst.append(calc_eye_close_ratio(lmk[None])) # for lip retargeting input_lip_ratio_lst.append(calc_lip_close_ratio(lmk[None])) return input_eye_ratio_lst, input_lip_ratio_lst def prepare_videos(imgs) -> torch.Tensor: """ construct the input as standard imgs: NxBxHxWx3, uint8 """ device = "cpu" if isinstance(imgs, list): _imgs = np.array(imgs)[..., np.newaxis] # TxHxWx3x1 elif isinstance(imgs, np.ndarray): _imgs = imgs else: raise ValueError(f'imgs type error: {type(imgs)}') y = _imgs.astype(np.float32) / 255. y = np.clip(y, 0, 1) # clip to 0~1 y = torch.from_numpy(y).permute(0, 4, 3, 1, 2) # TxHxWx3x1 -> Tx1x3xHxW y = y.to(device) return y def get_kp_info(x: torch.Tensor) -> dict: """ get the implicit keypoint information x: Bx3xHxW, normalized to 0~1 flag_refine_info: whether to trandform the pose to degrees and the dimention of the reshape return: A dict contains keys: 'pitch', 'yaw', 'roll', 't', 'exp', 'scale', 'kp' """ outs = motion_extractor.run(None, input_feed={"input": x.numpy()}) # TODO: axengine 中的 run 输入参数与 ort 还是些许不同 # import pdb; pdb.set_trace() # outs = list(outs.values()) kp_info = {} kp_info['pitch'] = torch.from_numpy(outs[0]) kp_info['yaw'] = torch.from_numpy(outs[1]) kp_info['roll'] = torch.from_numpy(outs[2]) kp_info['t'] = torch.from_numpy(outs[3]) kp_info['exp'] = torch.from_numpy(outs[4]) kp_info['scale'] = torch.from_numpy(outs[5]) kp_info['kp'] = torch.from_numpy(outs[6]) flag_refine_info: bool = True if flag_refine_info: bs = kp_info['kp'].shape[0] kp_info['pitch'] = headpose_pred_to_degree(kp_info['pitch'])[:, None] # Bx1 kp_info['yaw'] = headpose_pred_to_degree(kp_info['yaw'])[:, None] # Bx1 kp_info['roll'] = headpose_pred_to_degree(kp_info['roll'])[:, None] # Bx1 kp_info['kp'] = kp_info['kp'].reshape(bs, -1, 3) # BxNx3 kp_info['exp'] = kp_info['exp'].reshape(bs, -1, 3) # BxNx3 return kp_info def transform_keypoint(kp_info: dict): """ transform the implicit keypoints with the pose, shift, and expression deformation kp: BxNx3 """ kp = kp_info['kp'] # (bs, k, 3) pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll'] t, exp = kp_info['t'], kp_info['exp'] scale = kp_info['scale'] pitch = headpose_pred_to_degree(pitch) yaw = headpose_pred_to_degree(yaw) roll = headpose_pred_to_degree(roll) bs = kp.shape[0] if kp.ndim == 2: num_kp = kp.shape[1] // 3 # Bx(num_kpx3) else: num_kp = kp.shape[1] # Bxnum_kpx3 rot_mat = get_rotation_matrix(pitch, yaw, roll) # (bs, 3, 3), 欧拉角转换为旋转矩阵 # Eqn.2: s * (R * x_c,s + exp) + t kp_transformed = kp.view(bs, num_kp, 3) @ rot_mat + exp.view(bs, num_kp, 3) kp_transformed *= scale[..., None] # (bs, k, 3) * (bs, 1, 1) = (bs, k, 3) kp_transformed[:, :, 0:2] += t[:, None, 0:2] # remove z, only apply tx ty return kp_transformed def make_motion_template(I_lst, c_eyes_lst, c_lip_lst, **kwargs): n_frames = I_lst.shape[0] template_dct = { 'n_frames': n_frames, 'output_fps': kwargs.get('output_fps', 25), 'motion': [], 'c_eyes_lst': [], 'c_lip_lst': [], } for i in range(n_frames): # collect s, R, δ and t for inference I_i = I_lst[i] x_i_info = get_kp_info(I_i) x_s = transform_keypoint(x_i_info) R_i = get_rotation_matrix(x_i_info['pitch'], x_i_info['yaw'], x_i_info['roll']) item_dct = { 'scale': x_i_info['scale'].cpu().numpy().astype(np.float32), 'R': R_i.cpu().numpy().astype(np.float32), 'exp': x_i_info['exp'].cpu().numpy().astype(np.float32), 't': x_i_info['t'].cpu().numpy().astype(np.float32), 'kp': x_i_info['kp'].cpu().numpy().astype(np.float32), 'x_s': x_s.cpu().numpy().astype(np.float32), } template_dct['motion'].append(item_dct) c_eyes = c_eyes_lst[i].astype(np.float32) template_dct['c_eyes_lst'].append(c_eyes) c_lip = c_lip_lst[i].astype(np.float32) template_dct['c_lip_lst'].append(c_lip) return template_dct def prepare_source(img: np.ndarray) -> torch.Tensor: """ construct the input as standard img: HxWx3, uint8, 256x256 """ device = "cpu" h, w = img.shape[:2] x = img.copy() if x.ndim == 3: x = x[np.newaxis].astype(np.float32) / 255. # HxWx3 -> 1xHxWx3, normalized to 0~1 elif x.ndim == 4: x = x.astype(np.float32) / 255. # BxHxWx3, normalized to 0~1 else: raise ValueError(f'img ndim should be 3 or 4: {x.ndim}') x = np.clip(x, 0, 1) # clip to 0~1 x = torch.from_numpy(x).permute(0, 3, 1, 2) # 1xHxWx3 -> 1x3xHxW x = x.to(device) return x def extract_feature_3d(x: torch.Tensor) -> torch.Tensor: """ get the appearance feature of the image by F x: Bx3xHxW, normalized to 0~1 """ outs = appearance_feature_extractor.run(None, input_feed={"input": x.numpy()})[0] # outs = list(outs.values())[0] # import pdb; pdb.set_trace() return torch.from_numpy(outs) def stitch(kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: """ kp_source: BxNx3 kp_driving: BxNx3 Return: Bx(3*num_kp+2) """ feat_stiching = concat_feat(kp_source, kp_driving) delta = stitching_retargeting_module.run(None, input_feed={"input": feat_stiching.numpy()})[0] # delta = list(delta.values())[0] return torch.from_numpy(delta) def stitching(kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: """ conduct the stitching kp_source: Bxnum_kpx3 kp_driving: Bxnum_kpx3 """ bs, num_kp = kp_source.shape[:2] kp_driving_new = kp_driving.clone() delta = stitch(kp_source, kp_driving_new) delta_exp = delta[..., :3*num_kp].reshape(bs, num_kp, 3) # 1x20x3 delta_tx_ty = delta[..., 3*num_kp:3*num_kp+2].reshape(bs, 1, 2) # 1x1x2 kp_driving_new += delta_exp kp_driving_new[..., :2] += delta_tx_ty return kp_driving_new def warp_decode(feature_3d: torch.Tensor, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: """ get the image after the warping of the implicit keypoints feature_3d: Bx32x16x64x64, feature volume kp_source: BxNx3 kp_driving: BxNx3 """ warp_timer = Timer() warp_timer.tic() outs = warping_module.run([], {"feature_3d": feature_3d.numpy(), "kp_driving": kp_driving.numpy(), "kp_source": kp_source.numpy()})[2] warp_timer.toc() logger.debug(f'warp time: {warp_timer.diff:.3f}s') # outs = warping_module.run(input_feed={"feature_3d": feature_3d.numpy(), "kp_driving": kp_driving.numpy(), "kp_source": kp_source.numpy()})['out'] outs = spade_generator.run(None, input_feed={"input": outs})[0] # outs = list(outs.values())[0] ret_dct = {} ret_dct['out'] = torch.from_numpy(outs) return ret_dct def parse_output(out: torch.Tensor) -> np.ndarray: """ construct the output as standard return: 1xHxWx3, uint8 """ out = np.transpose(out.data.cpu().numpy(), [0, 2, 3, 1]) # 1x3xHxW -> 1xHxWx3 out = np.clip(out, 0, 1) # clip to 0~1 out = np.clip(out * 255, 0, 255).astype(np.uint8) # 0~1 -> 0~255 return out def load_model(model_type, model_path=None): if model_type == 'appearance_feature_extractor': model = InferenceSession(f"{model_path}/feature_extractor.axmodel") elif model_type == 'motion_extractor': model = InferenceSession(f'{model_path}/motion_extractor.axmodel') elif model_type == 'warping_module': model = ort.InferenceSession(f'{model_path}/warp.onnx', providers=["CPUExecutionProvider"]) # model = InferenceSession(f'{model_path}/warp.axmodel') elif model_type == 'spade_generator': model = InferenceSession(f'{model_path}/spade_generator.axmodel') elif model_type == 'stitching_retargeting_module': model = InferenceSession(f'{model_path}/stitching_retargeting.axmodel') return model def main(): args = parse_args() global appearance_feature_extractor appearance_feature_extractor = load_model("appearance_feature_extractor", args.models) global motion_extractor motion_extractor = load_model("motion_extractor", args.models) global warping_module warping_module = load_model("warping_module", args.models) global spade_generator spade_generator = load_model("spade_generator", args.models) global stitching_retargeting_module stitching_retargeting_module = load_model("stitching_retargeting_module", args.models) source = args.source driving = args.driving ffmpeg_dir = os.path.join(os.getcwd(), "ffmpeg") if osp.exists(ffmpeg_dir): os.environ["PATH"] += (os.pathsep + ffmpeg_dir) if not fast_check_ffmpeg(): raise ImportError( "FFmpeg is not installed. Please install FFmpeg (including ffmpeg and ffprobe) before running this script. https://ffmpeg.org/download.html" ) source_rgb_lst = preprocess(source) # rgb, resize & limit if is_video(args.driving): flag_is_driving_video = True # load from video file, AND make motion template output_fps = int(get_fps(args.driving)) driving_rgb_lst = load_video(args.driving) elif is_image(args.driving): flag_is_driving_video = False output_fps = 25 driving_rgb_lst = [load_image_rgb(driving)] # rgb else: raise Exception(f"{args.driving} is not a supported type!") ######## make motion template ######## cropper: Cropper = Cropper() logger.info("Start making driving motion template...") driving_n_frames = len(driving_rgb_lst) n_frames = driving_n_frames driving_lmk_crop_lst = cropper.calc_lmks_from_cropped_video(driving_rgb_lst) # cropper. driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst] # force to resize to 256x256 ####################################### c_d_eyes_lst, c_d_lip_lst = calc_ratio(driving_lmk_crop_lst) # save the motion template I_d_lst = prepare_videos(driving_rgb_crop_256x256_lst) driving_template_dct = make_motion_template(I_d_lst, c_d_eyes_lst, c_d_lip_lst, output_fps=output_fps) # wfp_template = remove_suffix(args.driving) + '.pkl' # dump(wfp_template, driving_template_dct) # logger.info(f"Dump motion template to {wfp_template}") if not flag_is_driving_video: c_d_eyes_lst = c_d_eyes_lst * n_frames c_d_lip_lst = c_d_lip_lst * n_frames I_p_pstbk_lst = [] logger.info("Prepared pasteback mask done.") I_p_lst = [] R_d_0, x_d_0_info = None, None flag_normalize_lip = False # inf_cfg.flag_normalize_lip # not overwrite flag_source_video_eye_retargeting = False # inf_cfg.flag_source_video_eye_retargeting # not overwrite lip_delta_before_animation, eye_delta_before_animation = None, None ######## process source info ######## # if the input is a source image, process it only once flag_do_crop = True if flag_do_crop: crop_info = cropper.crop_source_image(source_rgb_lst[0]) if crop_info is None: raise Exception("No face detected in the source image!") source_lmk = crop_info['lmk_crop'] img_crop_256x256 = crop_info['img_crop_256x256'] else: source_lmk = cropper.calc_lmk_from_cropped_image(source_rgb_lst[0]) img_crop_256x256 = cv2.resize(source_rgb_lst[0], (256, 256)) # force to resize to 256x256 I_s = prepare_source(img_crop_256x256) x_s_info = get_kp_info(I_s) x_c_s = x_s_info['kp'] R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll']) f_s = extract_feature_3d(I_s) x_s = transform_keypoint(x_s_info) # let lip-open scalar to be 0 at first mask_crop: ndarray = cv2.imread(make_abs_path('./utils/resources/mask_template.png'), cv2.IMREAD_COLOR) mask_ori_float = prepare_paste_back(mask_crop, crop_info['M_c2o'], dsize=(source_rgb_lst[0].shape[1], source_rgb_lst[0].shape[0])) with open(make_abs_path('./utils/resources/lip_array.pkl'), 'rb') as f: lip_array = pkl.load(f) device = "cpu" flag_is_source_video = False ######## animate ######## if flag_is_driving_video: # or (flag_is_source_video and not flag_is_driving_video) logger.info(f"The animated video consists of {n_frames} frames.") else: logger.info(f"The output of image-driven portrait animation is an image.") for i in range(n_frames): x_d_i_info = driving_template_dct['motion'][i] x_d_i_info = dct2device(x_d_i_info, device) R_d_i = x_d_i_info['R'] if 'R' in x_d_i_info.keys() else x_d_i_info['R_d'] # compatible with previous keys if i == 0: # cache the first frame R_d_0 = R_d_i x_d_0_info = x_d_i_info.copy() delta_new = x_s_info['exp'].clone() R_new = x_d_r_lst_smooth[i] if flag_is_source_video else (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s if flag_is_driving_video: delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp']) else: delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - torch.from_numpy(lip_array).to(dtype=torch.float32, device=device)) # delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - torch.from_numpy(lip_array).to(dtype=torch.float32, device=device)) scale_new = x_s_info['scale'] if flag_is_source_video else x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale']) t_new = x_s_info['t'] if flag_is_source_video else x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t']) t_new[..., 2].fill_(0) # zero tz x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new if i == 0 and flag_is_driving_video: x_d_0_new = x_d_i_new motion_multiplier = calc_motion_multiplier(x_s, x_d_0_new) # motion_multiplier *= inf_cfg.driving_multiplier x_d_diff = (x_d_i_new - x_d_0_new) * motion_multiplier x_d_i_new = x_d_diff + x_s # Algorithm 1: # with stitching and without retargeting x_d_i_new = stitching(x_s, x_d_i_new) x_d_i_new = x_s + (x_d_i_new - x_s) * 1.0 out = warp_decode(f_s, x_s, x_d_i_new) I_p_i = parse_output(out['out'])[0] I_p_lst.append(I_p_i) I_p_pstbk = paste_back(I_p_i, crop_info['M_c2o'], source_rgb_lst[0], mask_ori_float) I_p_pstbk_lst.append(I_p_pstbk) mkdir(args.output_dir) wfp_concat = None ######### build the final concatenation result ######### # driving frame | source frame | generation frames_concatenated = concat_frames(driving_rgb_crop_256x256_lst, [img_crop_256x256], I_p_lst) if flag_is_driving_video or (flag_is_source_video and not flag_is_driving_video): flag_source_has_audio = flag_is_source_video and has_audio_stream(args.source) flag_driving_has_audio = has_audio_stream(args.driving) wfp_concat = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}_concat.mp4') # NOTE: update output fps output_fps = source_fps if flag_is_source_video else output_fps images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps) if flag_source_has_audio or flag_driving_has_audio: # final result with concatenation wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}_concat_with_audio.mp4') audio_from_which_video = args.driving if ((flag_driving_has_audio and args.audio_priority == 'driving') or (not flag_source_has_audio)) else args.source logger.info(f"Audio is selected from {audio_from_which_video}, concat mode") add_audio_to_video(wfp_concat, audio_from_which_video, wfp_concat_with_audio) os.replace(wfp_concat_with_audio, wfp_concat) logger.info(f"Replace {wfp_concat_with_audio} with {wfp_concat}") # save the animated result wfp = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}.mp4') if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0: images2video(I_p_pstbk_lst, wfp=wfp, fps=output_fps) else: images2video(I_p_lst, wfp=wfp, fps=output_fps) ######### build the final result ######### if flag_source_has_audio or flag_driving_has_audio: wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}_with_audio.mp4') audio_from_which_video = args.driving if ((flag_driving_has_audio and args.audio_priority == 'driving') or (not flag_source_has_audio)) else args.source logger.info(f"Audio is selected from {audio_from_which_video}") add_audio_to_video(wfp, audio_from_which_video, wfp_with_audio) os.replace(wfp_with_audio, wfp) logger.info(f"Replace {wfp_with_audio} with {wfp}") # final log # if wfp_template not in (None, ''): # logger.info(f'Animated template: {wfp_template}, you can specify `-d` argument with this template path next time to avoid cropping video, motion making and protecting privacy.', style='bold green') logger.info(f'Animated video: {wfp}') logger.info(f'Animated video with concat: {wfp_concat}') else: wfp_concat = osp.join(args.output_dir, f'{basename(source)}--{basename(driving)}_concat.jpg') cv2.imwrite(wfp_concat, frames_concatenated[0][..., ::-1]) wfp = osp.join(args.output_dir, f'{basename(source)}--{basename(driving)}.jpg') if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0: cv2.imwrite(wfp, I_p_pstbk_lst[0][..., ::-1]) else: cv2.imwrite(wfp, frames_concatenated[0][..., ::-1]) # final log logger.info(f'Animated image: {wfp}') logger.info(f'Animated image with concat: {wfp_concat}') if __name__ == "__main__": """ Usage: python3 infer.py --source ../assets/examples/source/s0.jpg --driving ../assets/examples/driving/d8.jpg --models ./axmdoels --output-dir ./axmodel_infer """ timer = Timer() timer.tic() main() elapse = timer.toc() logger.debug(f'LivePortrait axmodel infer time: {elapse:.3f}s')