Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,195 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- zh
|
| 6 |
+
base_model:
|
| 7 |
+
- Qwen/Qwen2.5-VL-3B-Instruct
|
| 8 |
+
pipeline_tag: image-text-to-text
|
| 9 |
+
library_name: transformers
|
| 10 |
+
tags:
|
| 11 |
+
- Qwen2.5-VL
|
| 12 |
+
- Qwen2.5-VL-3B-Instruct
|
| 13 |
+
- Int8
|
| 14 |
+
- VLM
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# Qwen2.5-VL-3B-Instruct
|
| 18 |
+
|
| 19 |
+
This version of Qwen2.5-VL-3B-Instruct has been converted to run on the Axera NPU using **w8a16** quantization.
|
| 20 |
+
|
| 21 |
+
This model has been optimized with the following LoRA:
|
| 22 |
+
|
| 23 |
+
Compatible with Pulsar2 version: 3.4
|
| 24 |
+
|
| 25 |
+
## Convert tools links:
|
| 26 |
+
|
| 27 |
+
For those who are interested in model conversion, you can try to export axmodel through the original repo :
|
| 28 |
+
https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct
|
| 29 |
+
|
| 30 |
+
[Pulsar2 Link, How to Convert LLM from Huggingface to axmodel](https://pulsar2-docs.readthedocs.io/en/latest/appendix/build_llm.html)
|
| 31 |
+
|
| 32 |
+
[AXera NPU HOST LLM Runtime](https://github.com/AXERA-TECH/Qwen2.5-VL-3B-Instruct.axera)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
## Support Platform
|
| 36 |
+
|
| 37 |
+
- AX650
|
| 38 |
+
- AX650N DEMO Board
|
| 39 |
+
- [M4N-Dock(爱芯派Pro)](https://wiki.sipeed.com/hardware/zh/maixIV/m4ndock/m4ndock.html)
|
| 40 |
+
- [M.2 Accelerator card](https://axcl-docs.readthedocs.io/zh-cn/latest/doc_guide_hardware.html)
|
| 41 |
+
|
| 42 |
+
**Image Process**
|
| 43 |
+
|Chips| input size | image num | image encoder | ttft(320 tokens) | w8a16 | DDR | Flash |
|
| 44 |
+
|--|--|--|--|--|--|--|--|
|
| 45 |
+
|AX650| 448*448 | 1 | 780 ms | 420 ms | 6.2 tokens/sec| 4.3 GiB | 4.6 GiB |
|
| 46 |
+
|
| 47 |
+
**Video Process**
|
| 48 |
+
|Chips| input size | image num | image encoder |ttft(512 tokens) | w8a16 | DDR | Flash |
|
| 49 |
+
|--|--|--|--|--|--|--|--|
|
| 50 |
+
|AX650| 308*308 | 8 | 1400 ms | 5400 ms | 6.1 tokens/sec| 4.4 GiB | 4.7 GiB |
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
## How to use
|
| 54 |
+
|
| 55 |
+
Download all files from this repository to the device
|
| 56 |
+
|
| 57 |
+
**If you using AX650 Board**
|
| 58 |
+
```
|
| 59 |
+
root@ax650:/mnt/qtang/llm-test/qwen2.5-vl-3b# tree -L 2
|
| 60 |
+
.
|
| 61 |
+
├── image
|
| 62 |
+
│ └── ssd_car.jpg
|
| 63 |
+
├── main
|
| 64 |
+
├── python
|
| 65 |
+
│ ├── cv_resize.py
|
| 66 |
+
│ ├── infer_image.py
|
| 67 |
+
│ ├── infer_text.py
|
| 68 |
+
│ ├── infer_video.py
|
| 69 |
+
│ ├── preprocess.py
|
| 70 |
+
│ └── utils.py
|
| 71 |
+
├── qwen2_5-vl-3b-image-ax650
|
| 72 |
+
│ ├── Qwen2.5-VL-3B-Instruct_vision_nchw448.axmodel
|
| 73 |
+
│ ├── model.embed_tokens.weight.bfloat16.bin
|
| 74 |
+
│ ├── qwen2_5_vl_p320_l0_together.axmodel
|
| 75 |
+
......
|
| 76 |
+
│ ├── qwen2_5_vl_p320_l9_together.axmodel
|
| 77 |
+
│ └── qwen2_5_vl_post.axmodel
|
| 78 |
+
├── qwen2_5-vl-3b-video-ax650
|
| 79 |
+
│ ├── Qwen2.5-VL-3B-Instruct_vision_nhwc.axmodel
|
| 80 |
+
│ ├── model.embed_tokens.weight.bfloat16.bin
|
| 81 |
+
│ ├── qwen2_5_vl_p512_l0_together.axmodel
|
| 82 |
+
......
|
| 83 |
+
│ ├── qwen2_5_vl_p512_l9_together.axmodel
|
| 84 |
+
│ └── qwen2_5_vl_post.axmodel
|
| 85 |
+
├── qwen2_5-vl-tokenizer
|
| 86 |
+
│ ├── chat_template.json
|
| 87 |
+
│ ├── config.json
|
| 88 |
+
│ ├── generation_config.json
|
| 89 |
+
│ ├── merges.txt
|
| 90 |
+
│ ├── model.safetensors.index.json
|
| 91 |
+
│ ├── preprocessor_config.json
|
| 92 |
+
│ ├── tokenizer.json
|
| 93 |
+
│ ├── tokenizer_config.json
|
| 94 |
+
│ └── vocab.json
|
| 95 |
+
├── qwen2_tokenizer_image_448.py
|
| 96 |
+
├── qwen2_tokenizer_video_308.py
|
| 97 |
+
├── run_qwen2_5_vl_image.sh
|
| 98 |
+
├── run_qwen2_5_vl_video.sh
|
| 99 |
+
└── video
|
| 100 |
+
├── frame_0075.jpg
|
| 101 |
+
......
|
| 102 |
+
└── frame_0089.jpg
|
| 103 |
+
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
#### Install transformer
|
| 107 |
+
|
| 108 |
+
```
|
| 109 |
+
pip install transformers==4.41.1
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
#### Start the Tokenizer service
|
| 113 |
+
|
| 114 |
+
**If you using image process**
|
| 115 |
+
|
| 116 |
+
- input text
|
| 117 |
+
|
| 118 |
+
```
|
| 119 |
+
描述下图片
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
- input image
|
| 123 |
+
|
| 124 |
+

|
| 125 |
+
|
| 126 |
+
```
|
| 127 |
+
root@ax650:/mnt/qtang/llm-test/qwen2.5-vl-3b# ./run_qwen2_5_vl_image.sh
|
| 128 |
+
[I][ Init][ 129]: LLM init start
|
| 129 |
+
bos_id: -1, eos_id: 151645
|
| 130 |
+
2% | █ | 1 / 40 [0.01s<0.24s, 166.67 count/s] tokenizer init ok
|
| 131 |
+
[I][ Init][ 26]: LLaMaEmbedSelector use mmap
|
| 132 |
+
100% | ████████████████████████████████ | 40 / 40 [38.23s<38.23s, 1.05 count/s] init vpm axmodel ok,remain_cmm(7600 MB)
|
| 133 |
+
[I][ Init][ 277]: max_token_len : 1023
|
| 134 |
+
[I][ Init][ 282]: kv_cache_size : 256, kv_cache_num: 1023
|
| 135 |
+
[I][ Init][ 290]: prefill_token_num : 320
|
| 136 |
+
[I][ Init][ 292]: vpm_height : 1024,vpm_width : 392
|
| 137 |
+
[I][ Init][ 301]: LLM init ok
|
| 138 |
+
Type "q" to exit, Ctrl+c to stop current running
|
| 139 |
+
|
| 140 |
+
prompt >> who are you?
|
| 141 |
+
image >>
|
| 142 |
+
[I][ Run][ 638]: ttft: 2854.47 ms
|
| 143 |
+
I am a large language model created by Alibaba Cloud. I am called Qwen.
|
| 144 |
+
|
| 145 |
+
[N][ Run][ 779]: hit eos,avg 6.05 token/s
|
| 146 |
+
|
| 147 |
+
prompt >> 描述下图片
|
| 148 |
+
image >> image/ssd_car.jpg
|
| 149 |
+
[I][ Encode][ 416]: image encode time : 795.614014 ms, size : 524288
|
| 150 |
+
[I][ Run][ 638]: ttft: 2856.88 ms
|
| 151 |
+
这张图片展示了一条繁忙的城市街道。前景中,一名女子站在人行道上,她穿着黑色外套,面带微笑。她旁边是一辆红色的��层巴士,巴士上有一个广告,
|
| 152 |
+
上面写着“THINGS GET MORE EXITING WHEN YOU SAY ‘YES’”。巴士的车牌号是“L15”。巴士旁边停着一辆黑色的小型货车。背景中可以看到一些商店和行人,
|
| 153 |
+
街道两旁的建筑物是现代的玻璃幕墙建筑。整体氛围显得繁忙而充满活力。
|
| 154 |
+
|
| 155 |
+
[N][ Run][ 779]: hit eos,avg 5.96 token/s
|
| 156 |
+
```
|
| 157 |
+
|
| 158 |
+
**If you using video process**
|
| 159 |
+
|
| 160 |
+
```
|
| 161 |
+
root@ax650:/mnt/qtang/llm-test/qwen2.5-vl-3b# ./run_qwen2_5_vl_video.sh
|
| 162 |
+
[I][ Init][ 129]: LLM init start
|
| 163 |
+
bos_id: -1, eos_id: 151645
|
| 164 |
+
2% | █ | 1 / 40 [0.00s<0.12s, 333.33 count/s] tokenizer init ok
|
| 165 |
+
[I][ Init][ 26]: LLaMaEmbedSelector use mmap
|
| 166 |
+
100% | ████████████████████████████████ | 40 / 40 [40.05s<40.05s, 1.00 count/s] init vpm axmodel ok,remain_cmm(7680 MB)
|
| 167 |
+
[I][ Init][ 277]: max_token_len : 1023
|
| 168 |
+
[I][ Init][ 282]: kv_cache_size : 256, kv_cache_num: 1023
|
| 169 |
+
[I][ Init][ 290]: prefill_token_num : 512
|
| 170 |
+
[I][ Init][ 292]: vpm_height : 484,vpm_width : 392
|
| 171 |
+
[I][ Init][ 301]: LLM init ok
|
| 172 |
+
Type "q" to exit, Ctrl+c to stop current running
|
| 173 |
+
|
| 174 |
+
prompt >> 描述这个视频
|
| 175 |
+
image >> video
|
| 176 |
+
video/frame_0075.jpg
|
| 177 |
+
video/frame_0077.jpg
|
| 178 |
+
video/frame_0079.jpg
|
| 179 |
+
video/frame_0081.jpg
|
| 180 |
+
video/frame_0083.jpg
|
| 181 |
+
video/frame_0085.jpg
|
| 182 |
+
video/frame_0087.jpg
|
| 183 |
+
video/frame_0089.jpg
|
| 184 |
+
[I][ Encode][ 416]: image encode time : 1488.392944 ms, size : 991232
|
| 185 |
+
[I][ Run][ 638]: ttft: 5487.22 ms
|
| 186 |
+
视频显示的是一个城市街道的场景。时间戳显示为2月26日,地点是xxx。视频中,一名穿着深色外套和牛仔裤的男子正在推着一个行李箱。
|
| 187 |
+
突然,他似乎被什么东西绊倒,随后他摔倒在地。背景中可以看到一个广告牌,上面有一个绿色的图案,旁边停着一辆电动车。街道两旁有建筑物和树木,天气看起来有些阴沉。
|
| 188 |
+
|
| 189 |
+
[N][ Run][ 779]: hit eos,avg 5.94 token/s
|
| 190 |
+
```
|
| 191 |
+
|
| 192 |
+
#### Inference with M.2 Accelerator card
|
| 193 |
+
What is M.2 Accelerator card?, Show this DEMO based on Raspberry PI 5.
|
| 194 |
+
|
| 195 |
+
TODO
|