Update README.md
Browse files
README.md
CHANGED
@@ -43,8 +43,8 @@ For example, to chat with the finance model:
|
|
43 |
```python
|
44 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
45 |
|
46 |
-
model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-
|
47 |
-
tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-
|
48 |
|
49 |
# Put your input here:
|
50 |
user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered
|
@@ -56,17 +56,18 @@ MMM Chicago Stock Exchange, Inc.
|
|
56 |
|
57 |
Which debt securities are registered to trade on a national securities exchange under 3M's name as of Q2 of 2023?'''
|
58 |
|
59 |
-
#
|
60 |
-
prompt =
|
61 |
|
62 |
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
|
63 |
-
outputs = model.generate(input_ids=inputs, max_length=
|
64 |
|
65 |
answer_start = int(inputs.shape[-1])
|
66 |
pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
|
67 |
|
68 |
print(f'### User Input:\n{user_input}\n\n### Assistant Output:\n{pred}')
|
69 |
```
|
|
|
70 |
## Domain-Specific Tasks
|
71 |
To easily reproduce our results, we have uploaded the filled-in zero/few-shot input instructions and output completions of each domain-specific task: [biomedicine-tasks](https://huggingface.co/datasets/AdaptLLM/medicine-tasks), [finance-tasks](https://huggingface.co/datasets/AdaptLLM/finance-tasks), and [law-tasks](https://huggingface.co/datasets/AdaptLLM/law-tasks).
|
72 |
|
|
|
43 |
```python
|
44 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
45 |
|
46 |
+
model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-LLM")
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-LLM", use_fast=False)
|
48 |
|
49 |
# Put your input here:
|
50 |
user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered
|
|
|
56 |
|
57 |
Which debt securities are registered to trade on a national securities exchange under 3M's name as of Q2 of 2023?'''
|
58 |
|
59 |
+
# Simply use your input as the prompt for base models
|
60 |
+
prompt = user_input
|
61 |
|
62 |
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
|
63 |
+
outputs = model.generate(input_ids=inputs, max_length=2048)[0]
|
64 |
|
65 |
answer_start = int(inputs.shape[-1])
|
66 |
pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
|
67 |
|
68 |
print(f'### User Input:\n{user_input}\n\n### Assistant Output:\n{pred}')
|
69 |
```
|
70 |
+
|
71 |
## Domain-Specific Tasks
|
72 |
To easily reproduce our results, we have uploaded the filled-in zero/few-shot input instructions and output completions of each domain-specific task: [biomedicine-tasks](https://huggingface.co/datasets/AdaptLLM/medicine-tasks), [finance-tasks](https://huggingface.co/datasets/AdaptLLM/finance-tasks), and [law-tasks](https://huggingface.co/datasets/AdaptLLM/law-tasks).
|
73 |
|