Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -43,8 +43,8 @@ For example, to chat with the finance model: | |
| 43 | 
             
            ```python
         | 
| 44 | 
             
            from transformers import AutoModelForCausalLM, AutoTokenizer
         | 
| 45 |  | 
| 46 | 
            -
            model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance- | 
| 47 | 
            -
            tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance- | 
| 48 |  | 
| 49 | 
             
            # Put your input here:
         | 
| 50 | 
             
            user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered
         | 
| @@ -56,17 +56,18 @@ MMM Chicago Stock Exchange, Inc. | |
| 56 |  | 
| 57 | 
             
            Which debt securities are registered to trade on a national securities exchange under 3M's name as of Q2 of 2023?'''
         | 
| 58 |  | 
| 59 | 
            -
            #  | 
| 60 | 
            -
            prompt =  | 
| 61 |  | 
| 62 | 
             
            inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
         | 
| 63 | 
            -
            outputs = model.generate(input_ids=inputs, max_length= | 
| 64 |  | 
| 65 | 
             
            answer_start = int(inputs.shape[-1])
         | 
| 66 | 
             
            pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
         | 
| 67 |  | 
| 68 | 
             
            print(f'### User Input:\n{user_input}\n\n### Assistant Output:\n{pred}')
         | 
| 69 | 
             
            ```
         | 
|  | |
| 70 | 
             
            ## Domain-Specific Tasks
         | 
| 71 | 
             
            To easily reproduce our results, we have uploaded the filled-in zero/few-shot input instructions and output completions of each domain-specific task: [biomedicine-tasks](https://huggingface.co/datasets/AdaptLLM/medicine-tasks), [finance-tasks](https://huggingface.co/datasets/AdaptLLM/finance-tasks), and [law-tasks](https://huggingface.co/datasets/AdaptLLM/law-tasks).
         | 
| 72 |  | 
|  | |
| 43 | 
             
            ```python
         | 
| 44 | 
             
            from transformers import AutoModelForCausalLM, AutoTokenizer
         | 
| 45 |  | 
| 46 | 
            +
            model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-LLM")
         | 
| 47 | 
            +
            tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-LLM", use_fast=False)
         | 
| 48 |  | 
| 49 | 
             
            # Put your input here:
         | 
| 50 | 
             
            user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered
         | 
|  | |
| 56 |  | 
| 57 | 
             
            Which debt securities are registered to trade on a national securities exchange under 3M's name as of Q2 of 2023?'''
         | 
| 58 |  | 
| 59 | 
            +
            # Simply use your input as the prompt for base models
         | 
| 60 | 
            +
            prompt = user_input
         | 
| 61 |  | 
| 62 | 
             
            inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
         | 
| 63 | 
            +
            outputs = model.generate(input_ids=inputs, max_length=2048)[0]
         | 
| 64 |  | 
| 65 | 
             
            answer_start = int(inputs.shape[-1])
         | 
| 66 | 
             
            pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
         | 
| 67 |  | 
| 68 | 
             
            print(f'### User Input:\n{user_input}\n\n### Assistant Output:\n{pred}')
         | 
| 69 | 
             
            ```
         | 
| 70 | 
            +
             | 
| 71 | 
             
            ## Domain-Specific Tasks
         | 
| 72 | 
             
            To easily reproduce our results, we have uploaded the filled-in zero/few-shot input instructions and output completions of each domain-specific task: [biomedicine-tasks](https://huggingface.co/datasets/AdaptLLM/medicine-tasks), [finance-tasks](https://huggingface.co/datasets/AdaptLLM/finance-tasks), and [law-tasks](https://huggingface.co/datasets/AdaptLLM/law-tasks).
         | 
| 73 |  | 
