Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,100 @@
|
|
1 |
-
---
|
2 |
-
license: llama3.2
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3.2
|
3 |
+
datasets:
|
4 |
+
- AdaptLLM/remote-sensing-visual-instructions
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- meta-llama/Llama-3.2-11B-Vision-Instruct
|
9 |
+
tags:
|
10 |
+
- remote-sensing
|
11 |
+
---
|
12 |
+
# Adapting Multimodal Large Language Models to Domains via Post-Training
|
13 |
+
|
14 |
+
This repos contains the **biomedicine MLLM developed from Llama-3.2-11B-Vision-Instruct** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930). The correspoding training dataset is in [medicine-visual-instructions](https://huggingface.co/datasets/AdaptLLM/medicine-visual-instructions).
|
15 |
+
|
16 |
+
The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md)
|
17 |
+
|
18 |
+
## 1. To Chat with AdaMLLM
|
19 |
+
|
20 |
+
Our model architecture aligns with the base model: Llama-3.2-Vision-Instruct. We provide a usage example below, and you may refer to the official [Llama-3.2-Vision-Instruct Repository](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) for more advanced usage instructions,
|
21 |
+
|
22 |
+
**Note:** For AdaMLLM, always place the image at the beginning of the input instruction in the messages.
|
23 |
+
|
24 |
+
<details>
|
25 |
+
<summary> Click to expand </summary>
|
26 |
+
|
27 |
+
Starting with transformers >= 4.45.0 onward, you can run inference using conversational messages that may include an image you can query about.
|
28 |
+
|
29 |
+
Make sure to update your transformers installation via `pip install --upgrade transformers`.
|
30 |
+
|
31 |
+
```bash
|
32 |
+
import requests
|
33 |
+
import torch
|
34 |
+
from PIL import Image
|
35 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
36 |
+
|
37 |
+
model_id = "AdaptLLM/remote-sensing-Llama-3.2-11B-Vision-Instruct"
|
38 |
+
|
39 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
40 |
+
model_id,
|
41 |
+
torch_dtype=torch.bfloat16,
|
42 |
+
device_map="auto",
|
43 |
+
)
|
44 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
45 |
+
|
46 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"
|
47 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
48 |
+
|
49 |
+
# NOTE: For AdaMLLM, always place the image at the beginning of the input instruction in the messages.
|
50 |
+
messages = [
|
51 |
+
{"role": "user", "content": [
|
52 |
+
{"type": "image"},
|
53 |
+
{"type": "text", "text": "If I had to write a haiku for this one, it would be: "}
|
54 |
+
]}
|
55 |
+
]
|
56 |
+
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
57 |
+
inputs = processor(
|
58 |
+
image,
|
59 |
+
input_text,
|
60 |
+
add_special_tokens=False,
|
61 |
+
return_tensors="pt"
|
62 |
+
).to(model.device)
|
63 |
+
|
64 |
+
output = model.generate(**inputs, max_new_tokens=30)
|
65 |
+
print(processor.decode(output[0]))
|
66 |
+
```
|
67 |
+
</details>
|
68 |
+
|
69 |
+
## 2. To Evaluate Any MLLM on Domain-Specific Benchmarks
|
70 |
+
|
71 |
+
See [remote-sensing-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/remote-sensing-VQA-benchmark) to reproduce our results and evalaute more MLLMs on the domain-specific benchmarks.
|
72 |
+
|
73 |
+
## 3. To Reproduce this Domain-Adapted MLLM
|
74 |
+
|
75 |
+
See [Post-Train Guide](https://github.com/bigai-ai/QA-Synthesizer/blob/main/docs/Post_Train.md) to adapt MLLMs to domains.
|
76 |
+
|
77 |
+
## Citation
|
78 |
+
If you find our work helpful, please cite us.
|
79 |
+
|
80 |
+
[AdaMLLM](https://huggingface.co/papers/2411.19930)
|
81 |
+
```bibtex
|
82 |
+
@article{adamllm,
|
83 |
+
title={On Domain-Specific Post-Training for Multimodal Large Language Models},
|
84 |
+
author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
|
85 |
+
journal={arXiv preprint arXiv:2411.19930},
|
86 |
+
year={2024}
|
87 |
+
}
|
88 |
+
```
|
89 |
+
|
90 |
+
[Adapt LLM to Domains](https://huggingface.co/papers/2309.09530) (ICLR 2024)
|
91 |
+
```bibtex
|
92 |
+
@inproceedings{
|
93 |
+
cheng2024adapting,
|
94 |
+
title={Adapting Large Language Models via Reading Comprehension},
|
95 |
+
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
|
96 |
+
booktitle={The Twelfth International Conference on Learning Representations},
|
97 |
+
year={2024},
|
98 |
+
url={https://openreview.net/forum?id=y886UXPEZ0}
|
99 |
+
}
|
100 |
+
```
|