File size: 32,144 Bytes
272f31d 5cb5007 272f31d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
---
language:
- en
license: mit
metrics:
- accuracy
pipeline_tag: image-text-to-text
tags:
- VLM
- Computer-Use-Agent
- OS-Agent
- GUI
- Grounding
library_name: transformers
---
# Introduction (ADDED TikToken3 support)
Reinforcement learning (RL) (e.g., GRPO) helps with grounding because of its inherent objective alignmentβrewarding successful clicksβrather than encouraging long textual Chain-of-Thought (CoT) reasoning. Unlike approaches that rely heavily on verbose CoT reasoning, GRPO directly incentivizes actionable and grounded responses. Based on findings from our [blog](https://huggingface.co/blog/HelloKKMe/grounding-r1), we share state-of-the-art GUI grounding models trained using GRPO.
# Grounding Performance
We follow the standard evaluation protocol and benchmark our model on three challenging datasets. Our method consistently achieves the best results among all open-source model families. Below are the comparative results:
| **Model** | **Size** | **Open Source** | **ScreenSpot-V2** | **ScreenSpotPro** | **OSWORLD-G** | **OSWORLD-G-Refined** |
|-------------------|:--------:|:---------------:|:-----------------:|:-----------------:|:-----------------:|:-----------------:|
| OpenAI CUA | β | β | 87.9 | 23.4 | β | β |
| Claude 3.7 | β | β | 87.6 | 27.7 | β | β |
| JEDI-7B | 7B | β
| 91.7 | 39.5 | 54.1 | β |
| SE-GUI | 7B | β
| 90.3 | 47.0 | β | β |
| UI-TARS | 7B | β
| 91.6 | 35.7 | 47.5 | β |
| UI-TARS-1.5* | 7B | β
| 89.7* | 42.0* | 52.8* | 64.2* |
| UGround-v1-7B | 7B | β
| β | 31.1 | β | 36.4 |
| Qwen2.5-VL-32B-Instruct | 32B | β
| 91.9* | 48.0 | 46.5 | 59.6* |
| UGround-v1-72B | 72B | β
| β | 34.5 | β | β |
| Qwen2.5-VL-72B-Instruct | 72B | β
| 94.00* | 53.3 | β | 62.2* |
| UI-TARS | 72B | β
| 90.3 | 38.1 | β | β |
| OpenCUA | 7B | β
| 92.3 | 50.0 | 55.3 | 68.3* |
| OpenCUA | 32B | β
| 93.4 | 55.3 | 59.6 | 70.2* |
| GTA1-2507 (Ours) | 7B | β
| 92.4 <sub>*(β +2.7)*</sub> | 50.1<sub>*(β +8.1)*</sub> | 55.1 <sub>*(β +2.3)*</sub> | 67.7 <sub>*(β +3.5)*</sub> |
| GTA1 (Ours) | 7B | β
| 93.4 <sub>*(β +0.1)*</sub> | 55.5<sub>*(β +5.5)*</sub> | 60.1<sub>*(β +4.8)*</sub> | 68.8<sub>*(β +0.5)*</sub> |
| GTA1 (Ours) | 32B | β
| 95.2 <sub>*(β +1.8)*</sub> | 63.6<sub>*(β +8.3)*</sub> | 65.2 <sub>*(β +5.6)*</sub> | 72.2<sub>*(β +2.0)*</sub> |
> **Note:**
> - Model size is indicated in billions (B) of parameters.
> - A dash (β) denotes results that are currently unavailable.
> - A superscript asterisk (οΉ‘) denotes our evaluated result.
> - UI-TARS-1.5 7B, OpenCUA-7B, and OpenCUA-32B are applied as our baseline models.
> - β indicates the performance improvement (β) of our model compared to its baseline.
# Agent Performance
## OSWorld and OSWorld-Verified Benchmarks
We evaluate our models on the OSWorld and OSWorld-Verified benchmarks following the standard evaluation protocol. The results demonstrate strong performance across both datasets.
| **Agent Model** | **Step** | **OSWorld** | **OSWorld-Verified** |
|-----------------|:--------:|:-----------:|:-------------------:|
| **Proprietary Models** |
| Claude 3.7 Sonnet | 100 | 28.0 | β |
| OpenAI CUA 4o | 200 | 38.1 | β |
| UI-TARS-1.5 | 100 | 42.5 | 41.8 |
| OpenAI CUA o3 | 200 | 42.9 | β |
| **Open-Source Models** |
| Aria-UI w/ GPT-4o | 15 | 15.2 | β |
| Aguvis-72B w/ GPT-4o | 15 | 17.0 | β |
| UI-TARS-72B-SFT | 50 | 18.8 | β |
| Agent S w/ Claude-3.5-Sonnet | 15 | 20.5 | β |
| Agent S w/ GPT-4o | 15 | 20.6 | β |
| UI-TARS-72B-DPO | 15 | 22.7 | β |
| UI-TARS-72B-DPO | 50 | 24.6 | β |
| UI-TARS-1.5-7B | 100 | 26.9 | 27.4 |
| Jedi-7B w/ o3 | 100 | β | 51.0 |
| Jedi-7B w/ GPT-4o | 100 | 27.0 | β |
| Agent S2 w/ Claude-3.7-Sonnet | 50 | 34.5 | β |
| Agent S2 w/ Gemini-2.5-Pro | 50 | 41.4 | 45.8 |
| Agent S2.5 w/ o3 | 100 | β | 56.0 |
| Agent S2.5 w/ GPT-5 | 100 | β | 58.4 |
| CoAct-1 w/o3 & o4mini & OpenAI CUA 4o | 150 | β | 60.8 |
| GTA1-7B-2507 w/ o3 | 100 | 45.2 | 53.1 |
| GTA1-7B-2507 w/ GPT-5 | 100 | β | 61.0 |
| GTA1-32B w/ o3 | 100 | β | 55.4 |
| GTA1-32B w/ GPT-5 | 100 | β | 63.4 |
> **Note:** A dash (β) indicates unavailable results.
## WindowsAgentArena Benchmark
We also evaluate our models on the WindowsAgentArena benchmark, demonstrating strong performance in Windows-specific GUI automation tasks.
| **Agent Model** | **Step** | **Success Rate** |
|-----------------|:--------:|:---------------:|
| Kimi-VL | 15 | 10.4 |
| WAA | β | 19.5 |
| Jedi w/ GPT-4o | 100 | 33.7 |
| GTA1-7B-2507 w/ o3 | 100 | 47.9 |
| GTA1-7B-2507 w/ GPT-5 | 100 | 49.2 |
| GTA1-32B w/ o3 | 100 | 51.2 |
| GTA1-32B w/ GPT-5 | 100 | 50.6 |
> **Note:** A dash (β) indicates unavailable results.
# Inference
Below is a code snippet demonstrating how to run inference using a trained model.
```python
from transformers import AutoTokenizer, AutoImageProcessor
from transformers.models.qwen2_vl.image_processing_qwen2_vl_fast import smart_resize
from PIL import Image
from io import BytesIO
import base64
import re
from vllm import LLM, SamplingParams
instruction="click start"
image_path="example.png"
CLICK_REGEXES = [
# pyautogui.click(x=123, y=456)
re.compile(r"click\s*\(\s*x\s*=\s*(\d+)\s*,\s*y\s*=\s*(\d+)\s*\)", re.IGNORECASE),
# pyautogui.click(123, 456) or click(123,456)
re.compile(r"click\s*\(\s*(\d+)\s*,\s*(\d+)\s*\)", re.IGNORECASE),
]
def format_message(image_path,instruction):
SYSTEM_PROMPT = (
"You are a GUI agent. You are given a task and a screenshot of the screen. "
"You need to perform a series of pyautogui actions to complete the task."
)
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": [
{"type": "image", "image": image_path},
{"type": "text", "text": instruction},
]},
]
text = prompt_tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
text2, n = re.subn(
r"<\|media_begin\|>.*?<\|media_end\|>",
"<|vision_start|><|image_pad|><|vision_end|>",
text,
flags=re.S
)
if n == 0:
raise RuntimeError("Cannot find <|media_begin|>...<|media_end|> token.")
return text2
def parse_xy_from_text(text: str):
if "click" not in text.lower():
return [-1, -1]
for rx in CLICK_REGEXES:
m = rx.search(text)
if m:
try:
return int(m.group(1)), int(m.group(2))
except Exception:
continue
return [-1,-1]
def convert_pil_image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
llm = LLM(
model="Salesforce/GTA1-32B",
tokenizer="Salesforce/GTA1-32B",
tokenizer_mode="slow",
trust_remote_code=True,
dtype="bfloat16",
limit_mm_per_prompt={"image": 1},
tensor_parallel_size=1,
)
prompt_tok = AutoTokenizer.from_pretrained("Salesforce/GTA1-32B", trust_remote_code=True)
sp = SamplingParams(max_tokens=512, temperature=0.0)
tokenizer = llm.get_tokenizer()
processor=AutoImageProcessor.from_pretrained("Salesforce/GTA1-32B", trust_remote_code=True)
image = Image.open(image_path).convert('RGB')
resized_height, resized_width = smart_resize(
image.height,
image.width,
factor=processor.patch_size * processor.merge_size,
min_pixels=processor.min_pixels,
max_pixels=processor.max_pixels,
)
resized_image = image.resize((resized_width, resized_height))
messages = format_message(image_path, instruction)
response = llm.generate(
[{"prompt": messages, "multi_modal_data": {"image": [resized_image]}}],
sampling_params=sp
)[0].outputs[0].text
coordinates = parse_xy_from_text(response)
print(coordinates[0]/resized_width*image.width, coordinates[1]/resized_height*image.height)
```
# Model Serving
Below is an example script for serving the model.
```python
import torch
import os
# -------------------------
# System / Torch defaults
# -------------------------
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false") # avoid CPU oversubscription
os.environ.setdefault("VLLM_USE_V1", "1")
os.environ.setdefault("VLLM_ENGINE_IN_BACKGROUND_THREAD", "0")
import base64
import re
from typing import Dict, List, Union
from PIL import Image
from io import BytesIO
import traceback
import argparse
import asyncio
import requests
import ray
from ray import serve
from fastapi import FastAPI
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
import uuid
N_REPLICAS = 2
try:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
except Exception:
pass
# -------------------------
# IO helpers
# -------------------------
def pil_to_base64(img: Image.Image, format: str = "PNG") -> str:
buffer = BytesIO()
img.save(buffer, format=format)
img_bytes = buffer.getvalue()
img_b64 = base64.b64encode(img_bytes).decode("utf-8")
return img_b64
def data_uri_to_pil(data_uri: str) -> Image.Image:
header, b64_str = data_uri.split(",", 1)
img_data = base64.b64decode(b64_str)
buffer = BytesIO(img_data)
img = Image.open(buffer)
return img
def extract_images(messages: List[Dict]) -> List[Image.Image]:
images = []
for msg in messages:
if msg.get("role") == "user":
for content in msg.get("content", []):
if content.get("type") in ["image", "image_url"]:
if content["type"] == "image":
images.append(data_uri_to_pil(content["image"]).convert("RGB"))
else:
images.append(data_uri_to_pil(content["image_url"]["url"]).convert("RGB"))
return images
# -------------------------
# Prompt builder
# -------------------------
def build_prompt_with_template(tokenizer: AutoTokenizer, messages: List[Dict]) -> str:
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
text2, n = re.subn(
r"<\|media_begin\|>.*?<\|media_end\|>",
"<|vision_start|><|image_pad|><|vision_end|>",
text,
flags=re.S,
)
if n == 0:
raise RuntimeError("Did not find <|media_begin|>...<|media_end|> block in template.")
return text2
# -------------------------
# Deployment
# -------------------------
def build_app(model_path: str, num_replicas: int, port: int):
api = FastAPI(title="GTA1-32B Multi-GPU Service (High-throughput)")
@serve.deployment(
num_replicas=num_replicas,
ray_actor_options={"num_gpus": 1, "num_cpus": 4},
max_ongoing_requests=16,
)
class GTA1Model:
def __init__(self, model_path: str):
gpu_ids = ray.get_gpu_ids()
self.gpu_id = gpu_ids[0] if gpu_ids else 0
print(f"π Ray assigned GPU IDs: {gpu_ids}")
# Initialize vLLM within this replica (Ray sets CUDA_VISIBLE_DEVICES)
print(f"π Initializing vLLM on GPU {self.gpu_id}[ray id] from {model_path}")
if not torch.cuda.is_available():
raise RuntimeError("CUDA is not available")
self.llm = LLM(
model=model_path,
tokenizer=model_path,
tokenizer_mode="slow",
trust_remote_code=True,
dtype="bfloat16",
limit_mm_per_prompt={"image": 1},
max_model_len=32768,
tensor_parallel_size=1,
)
self.vllm_tokenizer = self.llm.get_tokenizer()
self.hf_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
self.model_path = model_path
self.dtype = "bfloat16"
print(f"β
vLLM initialized successfully (Ray GPU Id: {self.gpu_id})")
# ------------ batching core ------------
@serve.batch(max_batch_size=8, batch_wait_timeout_s=0.1) # increase if GPU allows
async def _generate_batch(self, payload: Union[Dict, List[Dict]]):
"""Build prompts, enforce single image, and call vLLM.generate."""
if isinstance(payload, dict):
list_of_payloads = [payload]
else:
list_of_payloads = payload
request_id = uuid.uuid4().hex[:8]
# --- Build per-sample prompt/image ---
prompts: List[str] = []
images_per_req: List[Image.Image] = []
error_results = []
early_exit = False
for p in list_of_payloads:
try:
messages = p["messages"]
imgs = extract_images(messages)
if len(imgs) != 1:
raise RuntimeError(f"Exactly one image is required, got {len(imgs)}")
prompt_text = build_prompt_with_template(self.hf_tokenizer, messages)
# Sanity check on tokens: 1 <|image_pad|>, no <|media_placeholder|>
tok = self.vllm_tokenizer
id_imgpad = tok.encode("<|image_pad|>", add_special_tokens=False)[0]
id_media = tok.encode("<|media_placeholder|>", add_special_tokens=False)[0]
ids = tok.encode(prompt_text, add_special_tokens=False)
if sum(i == id_imgpad for i in ids) != 1 or any(i == id_media for i in ids):
raise RuntimeError("Prompt media tokens invalid after conversion")
prompts.append(prompt_text)
images_per_req.append(imgs[0])
except Exception as e:
early_exit = True
trace = traceback.format_exc()
error_results.append(
{
"response": "",
"error": {
"message": str(e),
"trace": trace,
'type_of_payload': str(type(payload)),
'type_of_list_of_payloads': str(type(list_of_payloads)),
'type_of_p': str(type(p)),
'p_keys': str(p.keys()) if isinstance(p, dict) else str(p),
},
"usage": {},
"gpu_id": self.gpu_id
}
)
if early_exit:
return error_results
# --- vLLM generation ---
args_base = list_of_payloads[0]
sp = SamplingParams(
max_tokens=args_base.get("max_new_tokens", 512),
temperature=args_base.get("temperature", 0.0),
top_p=args_base.get("top_p", 0.9),
)
requests_list = [
{"prompt": pr, "multi_modal_data": {"image": [im]}}
for pr, im in zip(prompts, images_per_req)
]
outs = self.llm.generate(requests_list, sampling_params=sp)
tok = self.vllm_tokenizer
results: List[Dict] = []
for pr, o in zip(prompts, outs):
text = o.outputs[0].text if o.outputs else ""
gen_tokens = len(o.outputs[0].token_ids) if (o.outputs and hasattr(o.outputs[0], 'token_ids')) else None
prompt_tokens = len(tok.encode(pr, add_special_tokens=False))
usage = {
"prompt_tokens": prompt_tokens,
"generated_tokens": gen_tokens if gen_tokens is not None else None,
"total_tokens": (prompt_tokens + gen_tokens) if gen_tokens is not None else None,
}
results.append({
"response": text,
"error": "",
"usage": usage,
"gpu_id": self.gpu_id,
'bs_size_in_this_request': f"{request_id}:{len(list_of_payloads)}"
})
return results
# Exposed single-call entry that joins the batch
async def call_llm(self, payload: Dict):
try:
res = await self._generate_batch(payload)
return res
except Exception as e:
trace = traceback.format_exc()
return {"response": "", "error": {"message": str(e), "trace": trace}, "usage": {}, "gpu_id": self.gpu_id}
def health(self):
return {
"status": "ok",
"gpu_id": self.gpu_id,
"dtype": self.dtype,
"model_path": self.model_path,
}
model = GTA1Model.bind(model_path)
@serve.deployment(max_ongoing_requests=96)
@serve.ingress(api)
class GTA1App:
def __init__(self, model_handle):
self.model_deployment = model_handle
@api.get("/health")
async def health_all(self):
# Calling the same Serve handle N times does not guarantee each call hits a different replica
attempts = max(8, N_REPLICAS * 4) # oversample
calls = [self.model_deployment.health.remote() for i in range(attempts)]
replies = await asyncio.gather(*calls)
# dedupe by replica_id (or by tuple(gpu_id))
seen = {}
for r in replies:
seen[r.get("gpu_id", f"unknown-{len(seen)}")] = r
if len(seen) >= N_REPLICAS:
break
return {"replicas": list(seen.values())}
@api.post("/call_llm")
async def call_llm(self, req: Dict):
return await self.model_deployment.call_llm.remote(req)
return GTA1App.bind(model)
# -------------------------
# Main
# -------------------------
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="Salesforce/GTA1-32B")
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=3005)
parser.add_argument("--num_replicas", type=int, default=2)
args = parser.parse_args()
N_REPLICAS = args.num_replicas
ray.init(ignore_reinit_error=True)
print(f"π Starting GTA1-32B service on {args.host}:{args.port}")
serve.start(detached=True, http_options={"host": args.host, "port": args.port})
app = build_app(args.model_path, args.num_replicas, args.port)
serve.run(app, name="GTA1-32B", route_prefix="/")
# Quick health sample
try:
r = requests.get(f"http://0.0.0.0:{args.port}/health", timeout=5)
print(r.json())
except Exception as e:
print("Health probe failed:", e)
```
Here is the example usage,
```python
import argparse
import base64
import concurrent.futures
import json
import os
import re
from typing import Dict, List, Tuple
from gui_agent.agent.gta1.format_message import encode_numpy_image_to_base64, encode_image_bytes, smart_resize
import requests
from PIL import Image, ImageDraw
def image_file_to_data_uri(image_path: str) -> str:
if not os.path.exists(image_path):
raise FileNotFoundError(f"Image not found: {image_path}")
with open(image_path, "rb") as f:
b64 = base64.b64encode(f.read()).decode("utf-8")
# default to png; serverside only requires a data URI header then comma
return f"data:image/png;base64,{b64}"
def build_messages(image_path: str, instruction: str, system_prompt: str) -> List[Dict]:
return [
{"role": "system", "content": system_prompt},
{
"role": "user",
"content": [
{"type": "image", "image": image_file_to_data_uri(image_path)},
{"type": "text", "text": instruction},
],
},
]
def call_health(base_url: str, timeout: float = 10.0) -> Dict:
r = requests.get(f"{base_url}/health", timeout=timeout)
r.raise_for_status()
return r.json()
def call_single(
base_url: str,
image_path: str,
instruction: str,
system_prompt: str,
max_new_tokens: int = 512,
temperature: float = 0.0,
top_p: float = 0.9,
timeout: float = 120.0,
) -> List[Dict]:
payload = {
"messages": build_messages(image_path, instruction, system_prompt),
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
}
r = requests.post(f"{base_url}/call_llm", json=payload, timeout=timeout)
r.raise_for_status()
resp = r.json()
if isinstance(resp, dict):
return [resp]
return resp
def call_many_concurrent(
base_url: str,
image_path: str,
instruction: str,
system_prompt: str,
num_requests: int,
concurrency: int,
max_new_tokens: int = 512,
temperature: float = 0.0,
top_p: float = 0.9,
timeout: float = 120.0,
) -> List[List[Dict]]:
results: List[List[Dict]] = []
def _one(i: int) -> List[Dict]:
# Vary instruction slightly so you can trace requests
instr = f"{instruction} [req {i+1}/{num_requests}]"
return call_single(
base_url,
image_path,
instr,
system_prompt,
max_new_tokens,
temperature,
top_p,
timeout,
)
with concurrent.futures.ThreadPoolExecutor(max_workers=concurrency) as pool:
futures = [pool.submit(_one, i) for i in range(num_requests)]
for fut in concurrent.futures.as_completed(futures):
results.append(fut.result())
return results
def pretty_print_response(batch_results: List[Dict]) -> None:
if isinstance(batch_results, dict):
batch_results = [batch_results]
for idx, item in enumerate(batch_results):
if item.get("error"):
print(f"[#{idx}] ERROR: {json.dumps(item['error'], ensure_ascii=False)})")
else:
usage = item.get("usage", {})
print(f"[#{idx}] gpu={item.get('gpu_id')} tokens={usage} text=\n{item.get('response','').strip()}\n")
CLICK_KWARGS_REGEX = re.compile(r"pyautogui\.click\(\s*x\s*=\s*(\d+)\s*,\s*y\s*=\s*(\d+)\s*\)")
CLICK_POSARGS_REGEX = re.compile(r"pyautogui\.click\(\s*(\d+)\s*,\s*(\d+)\s*\)")
def extract_clicks_from_text(text: str) -> List[Tuple[int, int]]:
clicks: List[Tuple[int, int]] = []
for x, y in CLICK_KWARGS_REGEX.findall(text or ""):
clicks.append((int(x), int(y)))
for x, y in CLICK_POSARGS_REGEX.findall(text or ""):
clicks.append((int(x), int(y)))
return clicks
def extract_clicks_from_results(result_items: List[Dict]) -> List[Tuple[int, int]]:
clicks: List[Tuple[int, int]] = []
if isinstance(result_items, dict):
result_items = [result_items]
for item in result_items:
if item.get("error"):
continue
clicks.extend(extract_clicks_from_text(item.get("response", "")))
return clicks
def compute_resized_dims_for_server_mapping(image_path: str) -> Tuple[int, int, int, int]:
with Image.open(image_path) as im:
width, height = im.size
resized_H, resized_W = smart_resize(
height,
width,
factor=28,
min_pixels=1000,
max_pixels=1000000000000,
)
return width, height, int(resized_W), int(resized_H)
def map_clicks_to_original(clicks_resized: List[Tuple[int, int]],
original_w: int,
original_h: int,
resized_w: int,
resized_h: int) -> List[Tuple[int, int]]:
if resized_w == 0 or resized_h == 0:
return []
scale_x = original_w / float(resized_w)
scale_y = original_h / float(resized_h)
mapped: List[Tuple[int, int]] = []
for x, y in clicks_resized:
mapped_x = int(round(x * scale_x))
mapped_y = int(round(y * scale_y))
mapped.append((mapped_x, mapped_y))
return mapped
def draw_circles_on_image(image_path: str,
points: List[Tuple[int, int]],
output_path: str,
radius: int = 8,
color: Tuple[int, int, int] = (255, 0, 0),
width: int = 3) -> None:
if not points:
return
with Image.open(image_path).convert("RGB") as img:
drawer = ImageDraw.Draw(img)
for (x, y) in points:
left = x - radius
top = y - radius
right = x + radius
bottom = y + radius
drawer.ellipse([(left, top), (right, bottom)], outline=color, fill=(0,255,0), width=width)
img.save(output_path)
print(f"Annotated image saved to: {output_path} (points drawn: {len(points)})")
SYSTEM_PROMPT = (
"You are a GUI agent. You are given a task and a screenshot of the screen. "
"You need to perform a series of pyautogui actions to complete the task."
)
def main():
parser = argparse.ArgumentParser(description="Examples: single and batched inference against GTA1-32B Ray Serve.")
parser.add_argument("--host", type=str, default="http://localhost", help="Ray Serve host, e.g. http://localhost or http://IP")
parser.add_argument("--port", type=int, default=3005, help="Ray Serve port")
parser.add_argument("--image", type=str, required=False, default="example.jpg", help="Path to input image")
parser.add_argument("--instruction", type=str, default="click the icon in the bottom row, third from the left", help="User instruction")
parser.add_argument("--system", type=str, default=SYSTEM_PROMPT)
parser.add_argument("--mode", type=str, choices=["single", "batch", "health"], default="batch")
parser.add_argument("--num_requests", type=int, default=8, help="Number of requests in batch mode")
parser.add_argument("--concurrency", type=int, default=8, help="Max concurrent HTTP calls in batch mode")
parser.add_argument("--max_new_tokens", type=int, default=512)
parser.add_argument("--temperature", type=float, default=0.0)
parser.add_argument("--top_p", type=float, default=0.9)
parser.add_argument("--timeout", type=float, default=180.0)
args = parser.parse_args()
base_url = f"{args.host}:{args.port}"
if args.mode == "health":
info = call_health(base_url, timeout=10.0)
print(json.dumps(info, indent=2))
return
if args.mode == "single":
result_list = call_single(
base_url=base_url,
image_path=args.image,
instruction=args.instruction,
system_prompt=args.system,
max_new_tokens=args.max_new_tokens,
temperature=args.temperature,
top_p=args.top_p,
timeout=args.timeout,
)
print(result_list)
pretty_print_response(result_list)
clicks_resized = extract_clicks_from_results(result_list)
if clicks_resized:
orig_w, orig_h, resized_w, resized_h = compute_resized_dims_for_server_mapping(args.image)
mapped_clicks = map_clicks_to_original(clicks_resized, orig_w, orig_h, resized_w, resized_h)
out_path = f"ray_serve/annotated.png"
draw_circles_on_image(args.image, mapped_clicks, out_path)
return
if args.mode == "batch":
print(f"Submitting {args.num_requests} requests with concurrency={args.concurrency}...")
batch_outs = call_many_concurrent(
base_url=base_url,
image_path=args.image,
instruction=args.instruction,
system_prompt=args.system,
num_requests=args.num_requests,
concurrency=args.concurrency,
max_new_tokens=args.max_new_tokens,
temperature=args.temperature,
top_p=args.top_p,
timeout=args.timeout,
)
for i, one_result in enumerate(batch_outs):
print(f"===== Result for request {i+1} =====")
pretty_print_response(one_result)
all_clicks_resized: List[Tuple[int, int]] = []
for one_result in batch_outs:
all_clicks_resized.extend(extract_clicks_from_results(one_result))
if all_clicks_resized:
orig_w, orig_h, resized_w, resized_h = compute_resized_dims_for_server_mapping(args.image)
mapped_clicks = map_clicks_to_original(all_clicks_resized, orig_w, orig_h, resized_w, resized_h)
out_path = f"ray_serve/annotated.png"
draw_circles_on_image(args.image, mapped_clicks, out_path)
return
if __name__ == "__main__":
main()
```
## Ethical Considerations
This model is released for research and educational purposes. While our model demonstrates strong performance on GUI benchmarks, users should carefully evaluate its suitability for their specific use cases.
**Important Considerations:**
- **Accuracy Limitations:** Like all AI systems, this model may produce incorrect outputs or fail to accurately identify GUI elements in certain scenarios.
- **Safety and Security:** Exercise caution when deploying GUI automation agents, especially in production environments where incorrect actions could affect system integrity or data security.
- **Human Oversight:** We recommend maintaining appropriate human supervision when using this model for automated GUI interactions.
- **Compliance:** Users are responsible for ensuring their use of this model complies with applicable laws, regulations, and organizational policies.
**Recommended Best Practices:**
- Thoroughly test the model in controlled environments before production deployment
- Implement safeguards and error handling mechanisms
- Consider the potential impact of automated actions on user systems and data
- Regularly monitor and validate model performance in your specific domain
For further guidance on use cases, refer to our AUP and AI AUP.
## Citation
If you're using any GTA model or find it helpful in your research, please cite it as follows:
```markdown
@article{yang2025gta1guitesttimescaling,
title={GTA1: GUI Test-time Scaling Agent},
author={Yan Yang and Dongxu Li and Yutong Dai and Yuhao Yang and Ziyang Luo and Zirui Zhao and Zhiyuan Hu and Junzhe Huang and Amrita Saha and Zeyuan Chen and Ran Xu and Liyuan Pan and Silvio Savarese and Caiming Xiong and Junnan Li},
year={2025},
eprint={2507.05791},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2507.05791},
}
``` |