File size: 17,728 Bytes
85f0376 a391c99 85f0376 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
---
license: apache-2.0
base_model:
- Qwen/Qwen3-4B
tags:
- transformers
- sentence-similarity
- feature-extraction
- text-embeddings-inference
- reranking
pipeline_tag: feature-extraction
datasets:
- Alibaba-NLP/E2Rank_ranking_datasets
---
<!-- <div align="center">
<p align="center">
<img src="assets/overall.jpg" width="50%" height="50%" />
</p>
</div> -->
<div align="center">
<h1>E2Rank: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker</h1>
<a href="https://Alibaba-NLP.github.io/E2Rank/">π€ Website</a> |
<a href="https://arxiv.org/abs/2510.22733">π Arxiv Paper</a> |
<a href="https://huggingface.co/collections/Alibaba-NLP/e2rank">π€ Huggingface Collection</a> |
<a href="#π©-citation">π© Citation</a>
</div>
# π Introduction
We introduce E2Rank,
meaning **E**fficient **E**mbedding-based **Rank**ing
(also meaning **Embedding-to-Rank**),
which extends a single text embedding model
to perform both high-quality retrieval and listwise reranking,
thereby achieving strong effectiveness with remarkable efficiency.
By applying cosine similarity between the query and
document embeddings as a unified ranking function, the listwise ranking prompt,
which is constructed from the original query and its candidate documents, serves
as an enhanced query enriched with signals from the top-K documents, akin to
pseudo-relevance feedback (PRF) in traditional retrieval models. This design
preserves the efficiency and representational quality of the base embedding model
while significantly improving its reranking performance.
Empirically, E2Rank achieves state-of-the-art results on the BEIR reranking benchmark
and demonstrates competitive performance on the reasoning-intensive BRIGHT benchmark,
with very low reranking latency. We also show that the ranking training process
improves embedding performance on the MTEB benchmark.
Our findings indicate that a single embedding model can effectively unify retrieval and reranking,
offering both computational efficiency and competitive ranking accuracy.
**Our work highlights the potential of single embedding models to serve as unified retrieval-reranking engines, offering a practical, efficient, and accurate alternative to complex multi-stage ranking systems.**
# π Quick Start
## Model List
| Supported Task | Model Name | Size | Layers | Sequence Length | Embedding Dimension | Instruction Aware |
|-----------------------------|----------------------|------|--------|-----------------|---------------------|-------------------|
| **Embedding + Reranking** | [Alibaba-NLP/E2Rank-0.6B](https://huggingface.co/Alibaba-NLP/E2Rank-0.6B) | 0.6B | 28 | 32K | 1024 | Yes |
| **Embedding + Reranking** | [Alibaba-NLP/E2Rank-4B](https://huggingface.co/Alibaba-NLP/E2Rank-4B) | 4B | 36 | 32K | 2560 | Yes |
| **Embedding + Reranking** | [Alibaba-NLP/E2Rank-8B](https://huggingface.co/Alibaba-NLP/E2Rank-8B) | 8B | 36 | 32K | 4096 | Yes |
| Embedding Only | [Alibaba-NLP/E2Rank-0.6B-Embedding-Only](https://huggingface.co/Alibaba-NLP/E2Rank-0.6B-Embedding-Only) | 0.6B | 28 | 32K | 1024 | Yes |
| Embedding Only | [Alibaba-NLP/E2Rank-0.6B-Embedding-Only](https://huggingface.co/Alibaba-NLP/E2Rank-4B-Embedding-Only) | 4B | 36 | 32K | 2560 | Yes |
| Embedding Only | [Alibaba-NLP/E2Rank-0.6B-Embedding-Only](https://huggingface.co/Alibaba-NLP/E2Rank-8B-Embedding-Only) | 8B | 36 | 32K | 4096 | Yes |
> **Note**:
> - `Embedding Only` indicates that the model is trained only with the constrative learning and support embedding tasks, while `Embedding + Reranking` indicates the **full E2Rank model** trained with both embedding and reranking objectives (for more detals, please refer to the [paper]()).
> - `Instruction Aware` notes whether the model supports customizing the input instruction according to different tasks.
<!-- > - For `Listwise Reranking` models, they are supervised fine-tuned from the Qwen3 Models in the paradigm of RankGPT and support only the reranking task. -->
## Usage
### Embedding Model
The usage of E2Rank as an embedding model is similar to [Qwen3-Embedding](https://github.com/QwenLM/Qwen3-Embedding). The only difference is that Qwen3-Embedding will automatically append an EOS token, while E2Rank requires users to manully append the special token `<|endoftext|>` at the end of each input text.
**vLLM Usage (recommended)**
```python
# Requires vllm>=0.8.5
import torch
import vllm
from vllm import LLM
from vllm.config import PoolerConfig
def get_detailed_instruct(task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery:{query}'
# Each query must come with a one-sentence instruction that describes the task
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = [
get_detailed_instruct(task, 'What is the capital of China?'),
get_detailed_instruct(task, 'Explain gravity')
]
# No need to add instruction for retrieval documents
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun."
]
input_texts = queries + documents
input_texts = [t + "<|endoftext|>" for t in input_texts]
model = LLM(
model="Alibaba-NLP/E2Rank-4B",
task="embed",
override_pooler_config=PoolerConfig(pooling_type="LAST", normalize=True)
)
outputs = model.embed(input_texts)
embeddings = torch.tensor([o.outputs.embedding for o in outputs])
scores = (embeddings[:2] @ embeddings[2:].T)
print(scores.tolist())
```
<details>
<summary><b>Transformers Usage</b></summary>
```python
# Requires transformers>=4.51.0
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
def get_detailed_instruct(task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery:{query}'
# Each query must come with a one-sentence instruction that describes the task
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = [
get_detailed_instruct(task, 'What is the capital of China?'),
get_detailed_instruct(task, 'Explain gravity')
]
# No need to add instruction for retrieval documents
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun."
]
input_texts = queries + documents
input_texts = [t + "<|endoftext|>" for t in input_texts]
tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/E2Rank-4B', padding_side='left')
model = AutoModel.from_pretrained('Alibaba-NLP/E2Rank-4B')
max_length = 8192
# Tokenize the input texts
batch_dict = tokenizer(
input_texts,
padding=True,
truncation=True,
max_length=max_length,
return_tensors="pt",
)
batch_dict.to(model.device)
with torch.no_grad():
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T)
print(scores.tolist())
```
</details>
### Reranking
For using E2Rank as a reranker, you only need to perform additional processing on the query by adding (part of) the docs that needs to be reranked to the *listwise prompt*, while the rest is the same as using the embedding model.
**vLLM Usage (recommended)**
```python
# Requires vllm>=0.8.5
import torch
import vllm
from vllm import LLM
from vllm.config import PoolerConfig
model = LLM(
model="./checkpoints/E2Rank-4B",
task="embed",
override_pooler_config=PoolerConfig(pooling_type="LAST", normalize=True)
)
tokenizer = model.get_tokenizer()
def get_listwise_prompt(task_description: str, query: str, documents: list[str], num_input_docs: int = 20) -> str:
input_docs = documents[:num_input_docs]
input_docs = "\n".join([f"[{i}] {doc}" for i, doc in enumerate(input_docs, start=1)])
messages = [{
"role": "user",
"content": f'{task_description}\nDocuments:\n{input_docs}Search Query:{query}'
}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False,
)
return text
task = 'Given a web search query and some relevant documents, rerank the documents that answer the query:'
queries = [
'What is the capital of China?',
'Explain gravity'
]
# No need to add instruction for retrieval documents
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun."
]
documents = [doc + "<|endoftext|>" for doc in documents]
pseudo_queries = [
get_listwise_prompt(task, queries[0], documents),
get_listwise_prompt(task, queries[1], documents)
] # no need to add the EOS token here
input_texts = pseudo_queries + documents
outputs = model.embed(input_texts)
embeddings = torch.tensor([o.outputs.embedding for o in outputs])
scores = (embeddings[:2] @ embeddings[2:].T)
print(scores.tolist())
```
<details>
<summary><b>Transformers Usage</b></summary>
```python
# Requires transformers>=4.51.0
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('./checkpoints/E2Rank-4B', padding_side='left')
model = AutoModel.from_pretrained('./checkpoints/E2Rank-4B')
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
def get_listwise_prompt(task_description: str, query: str, documents: list[str], num_input_docs: int = 20) -> str:
input_docs = documents[:num_input_docs]
input_docs = "\n".join([f"[{i}] {doc}" for i, doc in enumerate(input_docs, start=1)])
messages = [{
"role": "user",
"content": f'{task_description}\nDocuments:\n{input_docs}Search Query:{query}'
}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False,
)
return text
task = 'Given a web search query and some relevant documents, rerank the documents that answer the query:'
queries = [
'What is the capital of China?',
'Explain gravity'
]
# No need to add instruction for retrieval documents
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun."
]
documents = [doc + "<|endoftext|>" for doc in documents]
pseudo_queries = [
get_listwise_prompt(task, queries[0], documents),
get_listwise_prompt(task, queries[1], documents)
] # no need to add the EOS token here
input_texts = pseudo_queries + documents
max_length = 8192
# Tokenize the input texts
batch_dict = tokenizer(
input_texts,
padding=True,
truncation=True,
max_length=max_length,
return_tensors="pt",
)
batch_dict.to(model.device)
with torch.no_grad():
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T)
print(scores.tolist())
```
</details>
### End-to-end search
Since E2Rank extends a single text embedding model to perform both high-quality retrieval and listwise reranking, you can directly use it to build an end-to-end search system. By reusing the embeddings computed during the retrieval stage, E2Rank only need to compute the pseudo query's embedding and can efficiently rerank the retrieved documents with minimal additional computational overhead.
Example code is coming soon.
# π Evaluation
## Reranking Benchmark
### BEIR
| | Covid | NFCorpus | Touche | DBPedia | SciFact | Signal | News | Robust | Avg. |
|------------------------------------------------------------|:-----:|:--------:|:------:|:-------:|:-------:|:------:|:-----:|:------:|:---------:|
| BM25 | 59.47 | 30.75 | 44.22 | 31.80 | 67.89 | 33.05 | 39.52 | 40.70 | 43.43 |
| *Zero-shot Listwise Reranker* | | | | | | | | | |
| RankGPT-4o | 83.41 | 39.67 | 32.26 | 45.56 | 77.41 | 34.20 | 51.92 | 60.25 | 53.09 |
| RankGPT-4o-mini | 80.03 | 38.73 | 30.91 | 44.54 | 73.14 | 33.64 | 50.91 | 57.41 | 51.16 |
| RankQwen3-14B | 84.45 | 38.94 | 38.30 | 44.52 | 78.64 | 33.58 | 51.24 | 59.66 | 53.67 |
| RankQwen3-32B | 83.48 | 39.22 | 37.13 | 45.00 | 78.22 | 32.12 | 51.08 | 60.74 | 53.37 |
| *Fine-tuned Listwise Reranker based on Qwen3* | | | | | | | | | |
| RankQwen3-0.6B | 78.35 | 36.41 | 37.54 | 39.19 | 71.01 | 30.96 | 44.43 | 46.31 | 48.03 |
| RankQwen3-4B | 83.91 | 39.88 | 32.66 | 43.91 | 76.37 | 32.15 | 50.81 | 59.36 | 52.38 |
| RankQwen3-8B | 85.37 | 40.05 | 31.73 | 45.44 | 78.96 | 32.48 | 52.36 | 60.72 | 53.39 |
| *Ours* | | | | | | | | | |
| **E2Rank-0.6B** | 79.17 | 38.60 | 41.91 | 41.96 | 73.43 | 35.26 | 52.75 | 53.67 | 52.09 |
| **E2Rank-4B** | 83.30 | 39.20 | 43.16 | 42.95 | 77.19 | 34.48 | 52.71 | 60.16 | 54.14 |
| **E2Rank-8B** | 84.09 | 39.08 | 42.06 | 43.44 | 77.49 | 34.01 | 54.25 | 60.34 | **54.35** |
## Embedding Benchmark
### MTEB (Eng, v1)
| Models | Retr. | Rerank. | Clust. | PairClass. | Class. | STS | Summ. | Avg. |
|------------------------------------|:-----:|:-------:|:------:|:----------:|:------:|:-----:|:-----:|:---------:|
| Instructor-xl | 49.26 | 57.29 | 44.74 | 86.62 | 73.12 | 83.06 | 32.32 | 61.79 |
| BGE-large-en-v1.5 | 54.29 | 60.03 | 46.08 | 87.12 | 75.97 | 83.11 | 31.61 | 64.23 |
| GritLM-7B | 53.10 | 61.30 | 48.90 | 86.90 | 77.00 | 82.80 | 29.40 | 64.70 |
| E5-Mistral-7b-v1 | 52.78 | 60.38 | 47.78 | 88.47 | 76.80 | 83.77 | 31.90 | 64.56 |
| Echo-Mistral-7b-v1 | 55.52 | 58.14 | 46.32 | 87.34 | 77.43 | 82.56 | 30.73 | 64.68 |
| LLM2Vec-Mistral-7B | 55.99 | 58.42 | 45.54 | 87.99 | 76.63 | 84.09 | 29.96 | 64.80 |
| LLM2Vec-Meta-LLaMA-3-8B | 56.63 | 59.68 | 46.45 | 87.80 | 75.92 | 83.58 | 30.94 | 65.01 |
| **E2Rank-0.6B** | 51.74 | 55.97 | 40.85 | 83.93 | 73.66 | 81.41 | 30.90 | 61.25 |
| **E2Rank-4B** | 55.33 | 59.10 | 44.27 | 87.14 | 77.08 | 84.03 | 30.06 | 64.47 |
| **E2Rank-8B** | 56.89 | 59.58 | 44.75 | 86.96 | 76.81 | 84.52 | 30.23 | **65.03** |
> Note: For baselines, we only compared with models that are trained using public datasets.
# π© Citation
If this work is helpful, please kindly cite as:
```bibtext
@misc{liu2025e2rank,
title={E2Rank: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker},
author={Qi Liu and Yanzhao Zhang and Mingxin Li and Dingkun Long and Pengjun Xie and Jiaxin Mao},
year={2025},
eprint={2510.22733},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2510.22733},
}
```
If you have any questions, feel free to contact us via qiliu6777[AT]gmail.com or create an issue.
|