Base Integration with SentenceTransformers
Browse files- 1_Pooling/config.json +10 -0
- config_sentence_transformers.json +7 -0
- custom_st.py +131 -0
- modules.json +20 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1536,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": true,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"prompts": {
|
3 |
+
"query": "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
|
4 |
+
},
|
5 |
+
"default_prompt_name": null,
|
6 |
+
"similarity_fn_name": null
|
7 |
+
}
|
custom_st.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
from typing import Any, Dict, Optional, List
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from sentence_transformers.models import Transformer as BaseTransformer
|
6 |
+
from transformers import AutoModelForVision2Seq, AutoProcessor
|
7 |
+
|
8 |
+
|
9 |
+
class MultiModalTransformer(BaseTransformer):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
model_name_or_path: str,
|
13 |
+
cache_dir: Optional[str] = None,
|
14 |
+
tokenizer_args: Optional[Dict[str, Any]] = None,
|
15 |
+
min_image_tokens: int = 256,
|
16 |
+
max_image_tokens: int = 1280,
|
17 |
+
max_length: int = 1800,
|
18 |
+
**kwargs,
|
19 |
+
):
|
20 |
+
super().__init__(model_name_or_path, **kwargs)
|
21 |
+
if tokenizer_args is None:
|
22 |
+
tokenizer_args = {}
|
23 |
+
tokenizer_args.pop("trust_remote_code", None)
|
24 |
+
|
25 |
+
# Initialize processor
|
26 |
+
min_pixels = min_image_tokens * 28 * 28
|
27 |
+
max_pixels = max_image_tokens * 28 * 28
|
28 |
+
self.processor = AutoProcessor.from_pretrained(
|
29 |
+
model_name_or_path, min_pixels=min_pixels, max_pixels=max_pixels, **kwargs
|
30 |
+
)
|
31 |
+
self.processor.tokenizer.padding_side = 'right'
|
32 |
+
self.sep = ' '
|
33 |
+
self.max_length = max_length
|
34 |
+
self.normalize = True
|
35 |
+
|
36 |
+
def _load_model(
|
37 |
+
self,
|
38 |
+
model_name_or_path: str,
|
39 |
+
config,
|
40 |
+
cache_dir: str,
|
41 |
+
backend: str,
|
42 |
+
is_peft_model: bool,
|
43 |
+
**model_args,
|
44 |
+
) -> None:
|
45 |
+
model_args.pop("trust_remote_code", None)
|
46 |
+
self.auto_model = AutoModelForVision2Seq.from_pretrained(
|
47 |
+
model_name_or_path, torch_dtype=torch.float16, **model_args
|
48 |
+
)
|
49 |
+
|
50 |
+
def forward(
|
51 |
+
self, features: Dict[str, torch.Tensor], **kwargs
|
52 |
+
) -> Dict[str, torch.Tensor]:
|
53 |
+
if features.get("inputs_embeds", None) is None:
|
54 |
+
features["inputs_embeds"] = self.auto_model.base_model.embed_tokens(features["input_ids"])
|
55 |
+
if features.get("pixel_values", None) is not None:
|
56 |
+
features["pixel_values"] = features["pixel_values"].type(self.auto_model.visual.get_dtype())
|
57 |
+
image_embeds = self.auto_model.visual(
|
58 |
+
features["pixel_values"], grid_thw=features["image_grid_thw"]
|
59 |
+
)
|
60 |
+
image_mask = features["input_ids"] == self.auto_model.config.image_token_id
|
61 |
+
features["inputs_embeds"][image_mask] = image_embeds
|
62 |
+
features.pop("pixel_values")
|
63 |
+
features.pop("image_grid_thw")
|
64 |
+
features.pop("input_ids")
|
65 |
+
outputs = self.auto_model.model(
|
66 |
+
**features,
|
67 |
+
return_dict=True,
|
68 |
+
output_hidden_states=True,
|
69 |
+
# **kwargs
|
70 |
+
)
|
71 |
+
pooling_mask = features["attention_mask"] if features.get("pooling_mask", None) is None else features["pooling_mask"]
|
72 |
+
left_padding = (pooling_mask[:, -1].sum() == pooling_mask.shape[0]) # TODO
|
73 |
+
if left_padding:
|
74 |
+
embeddings = outputs.last_hidden_state
|
75 |
+
else:
|
76 |
+
sequence_lengths = pooling_mask.sum(dim=1) - 1
|
77 |
+
embeddings = outputs.last_hidden_state[torch.arange(
|
78 |
+
outputs.last_hidden_state.shape[0], device=outputs.last_hidden_state.device
|
79 |
+
), sequence_lengths]
|
80 |
+
features.update({"token_embeddings": embeddings})
|
81 |
+
return features
|
82 |
+
|
83 |
+
def tokenize(self, texts: List[List[Dict[str, Image.Image]]] | List[str]) -> Dict[str, torch.Tensor]:
|
84 |
+
split_token = "<|im_end|>\n"
|
85 |
+
def process_text_item(item):
|
86 |
+
if isinstance(item, str):
|
87 |
+
return item, None
|
88 |
+
|
89 |
+
text, img = "", None
|
90 |
+
if "image" in item:
|
91 |
+
text += "<|vision_start|><|image_pad|><|vision_end|>"
|
92 |
+
img = item["image"]
|
93 |
+
if isinstance(img, bytes):
|
94 |
+
img = Image.open(BytesIO(img)).convert("RGB")
|
95 |
+
elif isinstance(img, str):
|
96 |
+
img = Image.open(img).convert("RGB")
|
97 |
+
elif not isinstance(img, Image):
|
98 |
+
raise ValueError(f"Unknown image type {type(img)}")
|
99 |
+
if "text" in item:
|
100 |
+
text += item["text"].lstrip()
|
101 |
+
if split_token in text:
|
102 |
+
instruction, text = text.split(split_token, 1)
|
103 |
+
text = f'{instruction}{split_token}<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>'
|
104 |
+
else:
|
105 |
+
text = f"<|im_start|>user\n{text}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>"
|
106 |
+
return text, img
|
107 |
+
|
108 |
+
all_texts, all_images = [], []
|
109 |
+
for item in texts:
|
110 |
+
text, images = process_text_item(item)
|
111 |
+
all_texts.append(text)
|
112 |
+
all_images.append(images)
|
113 |
+
|
114 |
+
if all_images != [None] * len(all_images):
|
115 |
+
inputs = self.processor(
|
116 |
+
text=all_texts,
|
117 |
+
images=all_images,
|
118 |
+
padding="longest",
|
119 |
+
truncation=True,
|
120 |
+
max_length=self.max_seq_length,
|
121 |
+
return_tensors="pt"
|
122 |
+
)
|
123 |
+
else:
|
124 |
+
inputs = self.processor(
|
125 |
+
text=all_texts,
|
126 |
+
padding="longest",
|
127 |
+
truncation=True,
|
128 |
+
max_length=self.max_seq_length,
|
129 |
+
return_tensors="pt"
|
130 |
+
)
|
131 |
+
return inputs
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "custom_st.MultiModalTransformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|