--- base_model: Qwen/Qwen2-VL-7B-Instruct library_name: transformers license: apache-2.0 tags: - llama-factory - full - generated_from_trainer - long-context - reasoning - multi-modal model-index: - name: TVC-7B results: [] pipeline_tag: image-text-to-text --- ## Model Summary The TVC models are 7B parameter models based on Qwen2-VL-7B-Instruct model with a context window of 8K tokens. - **Repository:** https://github.com/sun-hailong/TVC - **Project Page:** https://sun-hailong.github.io/projects/TVC/ - **Languages:** English, Chinese - **Paper:** https://arxiv.org/abs/2503.13360 ### Model Architecture - **Architecture:** Qwen2-VL-7B-Instruct - **Data:** a mixture of 300k long-chain reasoning data - **Precision:** BFloat16 #### Hardware & Software - **Hardware:** 64 * NVIDIA Tesla H20 - **Orchestration:** HuggingFace Trainer - **Code:** Pytorch ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3 ## Quick Start ```python from vllm import LLM, SamplingParams from PIL import Image model_name = "Allen8/TVC-72B" llm = LLM( model=model_name, trust_remote_code=True, tensor_parallel_size=8, ) question = "Hint: Please answer the question requiring an integer answer and provide the final value, e.g., 1, 2, 3, at the end. Question: Subtract all red things. Subtract all tiny matte balls. How many objects are left? Please answer the question using a long-chain reasoning style and think step by step." placeholder = "<|image_pad|>" prompt = ("<|im_start|>system You are a helpful assistant.<|im_end|> " f"<|im_start|>user <|vision_start|>{placeholder}<|vision_end|>" f"{question}<|im_end|> " "<|im_start|>assistant ") sampling_params = SamplingParams( temperature=0.0, top_k=1, top_p=1.0, stop_token_ids=[], repetition_penalty=1.05, max_tokens=8192 ) image = Image.open("images/case1.png") inputs = { "prompt": prompt, "multi_modal_data": { "image": image }, } outputs = llm.generate([inputs], sampling_params=sampling_params) print(outputs[0].outputs[0].text) ``` ## Citation ``` @article{sun2024mitigating, title={Mitigating Visual Forgetting via Take-along Visual Conditioning for Multi-modal Long CoT Reasoning}, author={Sun, Hai-Long and Sun, Zhun and Peng, Houwen and Ye, Han-Jia}, journal={arXiv preprint arXiv:2503.13360}, year={2025} } ```