Russal commited on
Commit
67b23de
·
1 Parent(s): 829a3db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -7
README.md CHANGED
@@ -103,6 +103,20 @@ model = model.quantize(4).cuda()
103
 
104
  ## [CMMLU](https://github.com/haonan-li/CMMLU)
105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  | Model zero-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average |
107
  | ------------------------------------------------------------ | :-------: | :--------: | :-------------: | :-------: | :------------: | :-------: |
108
  | [ChatGLM2-6B](https://huggingface.co/THUDM/chatglm2-6b) | 41.28 | 52.85 | 53.37 | 52.24 | 50.58 | 49.95 |
@@ -114,19 +128,18 @@ model = model.quantize(4).cuda()
114
  | [Chinese-GLM-10B](https://github.com/THUDM/GLM) | 25.57 | 25.01 | 26.33 | 25.94 | 25.81 | 25.80 |
115
  | [Baichuan-13B](https://github.com/baichuan-inc/Baichuan-7B) | 42.04 | 60.49 | 59.55 | 56.60 | 55.72 | 54.63 |
116
  | [Baichuan-13B-Chat](https://github.com/baichuan-inc/Baichuan-7B) | 37.32 | 56.24 | 54.79 | 54.07 | 52.23 | 50.48 |
117
- | **Baichuan-13B-Instruction** | **42.56** | **62.09** | **60.41** | **58.97** | **56.95** | **55.88** |
118
  | **Baichuan-7B-Instruction** | **33.94** | **46.31** | **47.73** | **45.84** | **44.88** | **43.53** |
119
 
120
  > 说明:CMMLU 是一个综合性的中文评估基准,专门用于评估语言模型在中文语境下的知识和推理能力。我们直接使用其官方的[评测脚本](https://github.com/haonan-li/CMMLU)对模型进行评测。Model zero-shot 表格中 [Baichuan-13B-Chat](https://github.com/baichuan-inc/Baichuan-13B) 的得分来自我们直接运行 CMMLU 官方的评测脚本得到,其他模型的的得分来自于 [CMMLU](https://github.com/haonan-li/CMMLU/tree/master) 官方的评测结果.
121
 
122
- ### English Leaderboard
123
- In addition to Chinese, we also tested the model's performance in English.
124
 
125
  #### MMLU
126
 
127
- [MMLU](https://arxiv.org/abs/2009.03300) is an English evaluation dataset that includes 57 multiple-choice tasks, covering elementary mathematics, American history, computer science, law, etc. The difficulty ranges from high school level to expert level, making it a mainstream LLM evaluation dataset.
128
-
129
- We adopted the [open-source]((https://github.com/hendrycks/test)) evaluation scheme, and the final 5-shot results are as follows:
130
 
131
  | Model | Humanities | Social Sciences | STEM | Other | Average |
132
  |----------------------------------------|-----------:|:---------------:|:----:|:-----:|:-------:|
@@ -139,4 +152,8 @@ We adopted the [open-source]((https://github.com/hendrycks/test)) evaluation sch
139
  | moss-moon-003-base (16B)<sup>0</sup> | 24.2 | 22.8 | 22.4 | 24.4 | 23.6 |
140
  | moss-moon-003-sft (16B)<sup>0</sup> | 30.5 | 33.8 | 29.3 | 34.4 | 31.9 |
141
  | Baichuan-7B<sup>0</sup> | 38.4 | 48.9 | 35.6 | 48.1 | 42.3 |
142
- | **Baichuan-7B<sup>0</sup>** | **38.9** | **49.0** | **35.3** | **48.8** | **42.6** |
 
 
 
 
 
103
 
104
  ## [CMMLU](https://github.com/haonan-li/CMMLU)
105
 
106
+ | Model 5-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average |
107
+ | ---------------------------------------------------------- | :-------: | :--------: | :-------------: | :------: | :------------: | :------: |
108
+ | Baichuan-7B | 34.4 | 47.5 | 47.6 | 46.6 | 44.3 | 44.0 |
109
+ | Vicuna-13B | 31.8 | 36.2 | 37.6 | 39.5 | 34.3 | 36.3 |
110
+ | Chinese-Alpaca-Plus-13B | 29.8 | 33.4 | 33.2 | 37.9 | 32.1 | 33.4 |
111
+ | Chinese-LLaMA-Plus-13B | 28.1 | 33.1 | 35.4 | 35.1 | 33.5 | 33.0 |
112
+ | Ziya-LLaMA-13B-Pretrain | 29.0 | 30.7 | 33.8 | 34.4 | 31.9 | 32.1 |
113
+ | LLaMA-13B | 29.2 | 30.8 | 31.6 | 33.0 | 30.5 | 31.2 |
114
+ | moss-moon-003-base (16B) | 27.2 | 30.4 | 28.8 | 32.6 | 28.7 | 29.6 |
115
+ | Baichuan-13B-Base | 41.7 | 61.1 | 59.8 | 59.0 | 56.4 | 55.3 |
116
+ | Baichuan-13B-Chat | 42.8 | 62.6 | 59.7 | 59.0 | 56.1 | 55.8 |
117
+ | Baichuan-13B-Instruction | 44.50 | 61.16 | 59.07 | 58.34 | 55.55 | 55.61 |
118
+ | **Baichuan-7B-Instruction** | **34.68** | **47.38** | **47.13** | **45.11** | **44.51** | **43.57** |
119
+
120
  | Model zero-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average |
121
  | ------------------------------------------------------------ | :-------: | :--------: | :-------------: | :-------: | :------------: | :-------: |
122
  | [ChatGLM2-6B](https://huggingface.co/THUDM/chatglm2-6b) | 41.28 | 52.85 | 53.37 | 52.24 | 50.58 | 49.95 |
 
128
  | [Chinese-GLM-10B](https://github.com/THUDM/GLM) | 25.57 | 25.01 | 26.33 | 25.94 | 25.81 | 25.80 |
129
  | [Baichuan-13B](https://github.com/baichuan-inc/Baichuan-7B) | 42.04 | 60.49 | 59.55 | 56.60 | 55.72 | 54.63 |
130
  | [Baichuan-13B-Chat](https://github.com/baichuan-inc/Baichuan-7B) | 37.32 | 56.24 | 54.79 | 54.07 | 52.23 | 50.48 |
131
+ | Baichuan-13B-Instruction | 42.56 | 62.09 | 60.41 | 58.97 | 56.95 | 55.88 |
132
  | **Baichuan-7B-Instruction** | **33.94** | **46.31** | **47.73** | **45.84** | **44.88** | **43.53** |
133
 
134
  > 说明:CMMLU 是一个综合性的中文评估基准,专门用于评估语言模型在中文语境下的知识和推理能力。我们直接使用其官方的[评测脚本](https://github.com/haonan-li/CMMLU)对模型进行评测。Model zero-shot 表格中 [Baichuan-13B-Chat](https://github.com/baichuan-inc/Baichuan-13B) 的得分来自我们直接运行 CMMLU 官方的评测脚本得到,其他模型的的得分来自于 [CMMLU](https://github.com/haonan-li/CMMLU/tree/master) 官方的评测结果.
135
 
136
+ ### 英文能力评测
137
+ 除了中文榜单的测试,我们同样测试了模型在英文榜单 MMLU 上的能力。
138
 
139
  #### MMLU
140
 
141
+ [MMLU](https://arxiv.org/abs/2009.03300) 是一个包含了57种任务的英文评测数据集。
142
+ 我们采用了开源的[评测方案]((https://github.com/hendrycks/test)) , 评测结果如下:
 
143
 
144
  | Model | Humanities | Social Sciences | STEM | Other | Average |
145
  |----------------------------------------|-----------:|:---------------:|:----:|:-----:|:-------:|
 
152
  | moss-moon-003-base (16B)<sup>0</sup> | 24.2 | 22.8 | 22.4 | 24.4 | 23.6 |
153
  | moss-moon-003-sft (16B)<sup>0</sup> | 30.5 | 33.8 | 29.3 | 34.4 | 31.9 |
154
  | Baichuan-7B<sup>0</sup> | 38.4 | 48.9 | 35.6 | 48.1 | 42.3 |
155
+ | **Baichuan-7B-Instruction(5-shot)** | **38.9** | **49.0** | **35.3** | **48.8** | **42.6** |
156
+ | **Baichuan-7B-Instruction(0-shot)** | **38.7** | **47.9** | **34.5** | **48.2** | **42.0** |
157
+
158
+ > 说明:CMMLU 是一个综合性的中文评估基准,专门用于评估语言模型在中文语境下的知识和推理能力。我们直接使用其官方的[评测脚本](https://github.com/haonan-li/CMMLU)对模型进行评测。Model zero-shot 表格中 [Baichuan-13B-Chat](https://github.com/baichuan-inc/Baichuan-13B) 的得分来自我们直接运行 CMMLU 官方的评测脚本得到,其他模型的的得分来自于 [CMMLU](https://github.com/haonan-li/CMMLU/tree/master) 官方的评测结果.
159
+