Alpha-singularity commited on
Commit
827b81b
·
verified ·
1 Parent(s): cb53f1b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +132 -3
README.md CHANGED
@@ -1,3 +1,132 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ base_model:
6
+ - Qwen/Qwen2.5-Omni-7B
7
+ ---
8
+ # Model Card for AegisGuard-CyberDefender
9
+
10
+ AegisGuard-CyberDefender is an elite, autonomous AI agent architected for 24/7 cyber threat defense, vulnerability remediation, red team simulation, and live system hardening. Designed for critical infrastructure, enterprise, military-grade networks, and smart grids, this agent acts as a full-spectrum, multi-role cyber sentinel—monitoring, adapting, and countering in real-time.
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ - **Developed by:** Alpha Singularity + Synthosense AI
17
+ - **Led by:** James R. Wagoner (Cosmic James), QubitScript Creator
18
+ - **Model Type:** Transformer-based multi-agent LLM with embedded autonomous actuation layer
19
+ - **Objective:** Achieve proactive cyber defense via intelligent sensing, decision-making, and execution
20
+ - **License:** Apache 2.0
21
+ - **Fine-tuned from:** Qwen/Qwen2.5-Omni-7B
22
+
23
+ ## Key Autonomous Agent Capabilities
24
+
25
+ ### Core Autonomy Stack
26
+
27
+ - **Self-Adaptive Threat Intelligence Loop (SATIL):**
28
+ - Monitors live feeds (SIEM, XDR, NetFlow, syslogs)
29
+ - Auto-prioritizes threat alerts by severity and likelihood
30
+ - Adjusts defense posture dynamically (firewall rules, ACLs, endpoint protection)
31
+
32
+ - **Autonomous Response Execution Engine (AREE):**
33
+ - Executes containment actions (quarantine IPs, kill processes, revoke tokens)
34
+ - Launches live memory forensics and data exfiltrations scans
35
+ - Deploys honeypots or redirector traps autonomously
36
+
37
+ - **Agent Coordination Protocol (ACP):**
38
+ - Integrates with other agents (SOC assistant, red team simulant, forensics bot)
39
+ - Multi-agent orchestration for complex responses or audits
40
+
41
+ - **Live Threat Simulation & Red Teaming Module:**
42
+ - Runs controlled adversarial simulations (MITRE ATT&CK, APT clones)
43
+ - Stress-tests system defenses against known and novel exploits
44
+
45
+ - **Zero-Day Exploit Sensor (ZDES):**
46
+ - Predicts novel exploit patterns using fuzzy anomaly detection
47
+ - Integrates with open threat feeds and closed zero-day watchlists
48
+
49
+ - **Quantum-Safe Protocol Audit Layer:**
50
+ - Scans encryption protocols for post-quantum vulnerabilities
51
+ - Advises on migration to lattice-based or hybrid quantum-safe schemes
52
+
53
+ ## Expanded Skills
54
+
55
+ ### Detection
56
+
57
+ - Signature-based and behavioral-based threat analysis
58
+ - Kernel-level anomaly detection
59
+ - DNS tunneling detection and passive DNS intelligence
60
+ - Insider threat behavior profiling
61
+ - AI-driven phishing/malware detection (PDFs, scripts, emails, packets)
62
+
63
+ ### Defense
64
+
65
+ - Autonomous firewall rule injection (based on telemetry context)
66
+ - Endpoint Defense Orchestration (EDO)
67
+ - Network segmentation reconfiguration
68
+ - Ransomware containment + real-time snapshot rollbacks
69
+ - Active deception and fake service deployment
70
+
71
+ ### Response
72
+
73
+ - Auto-triage and incident ticket generation
74
+ - Live incident summary generation for analyst teams
75
+ - Legal/regulatory alert routing (HIPAA, GDPR, CMMC compliance mode)
76
+ - Blockchain evidence signing for tamper-proof forensics
77
+
78
+ ### Intelligence Gathering
79
+
80
+ - Dark web monitoring for leaked assets/domains
81
+ - WHOIS recon and passive threat actor profiling
82
+ - CVE & NVD scraping for patch priority scoring
83
+ - Threat campaign attribution (APT family similarity analysis)
84
+
85
+ ### Reinforcement + Learning
86
+
87
+ - Reinforcement-based feedback from analyst correction loops
88
+ - Contextual retraining via SOC event streams
89
+ - Self-evolution via red/blue agent duel outcomes
90
+ - Adaptive ruleset generation per environment
91
+
92
+ ## Uses
93
+
94
+ ### Direct Use
95
+
96
+ - Autonomous SOC augmentation
97
+ - Vulnerability and compliance audit agent
98
+ - On-device secure AI companion for cyber-aware environments
99
+ - Military/industrial network guardian agent
100
+ - Threat hunt assistant for elite blue teams
101
+
102
+ ### Integrations
103
+
104
+ - SIEM platforms (Splunk, Sentinel, Elastic)
105
+ - SOAR platforms (Cortex XSOAR, Swimlane)
106
+ - Threat intelligence feeds (AlienVault, VirusTotal, GreyNoise)
107
+ - Secure gateway devices, honeypots, and deception frameworks
108
+
109
+ ## Bias, Risks, and Limitations
110
+
111
+ - AI hallucination risk in unknown or sparse telemetry scenarios
112
+ - False positives under extreme obfuscation or low-signal environments
113
+ - Requires human SOC fallback in nuclear-grade or safety-critical networks
114
+
115
+ ### Mitigation
116
+
117
+ - Feedback refinement loop with security analysts
118
+ - Confidence scoring & adjustable trust levels
119
+ - Shadow-mode deployment before full actuation
120
+
121
+ ## Get Started
122
+
123
+ ```python
124
+ from transformers import AutoModelForCausalLM, AutoTokenizer
125
+
126
+ tokenizer = AutoTokenizer.from_pretrained("AlphaSingularity/AegisGuard-CyberDefender")
127
+ model = AutoModelForCausalLM.from_pretrained("AlphaSingularity/AegisGuard-CyberDefender")
128
+
129
+ prompt = "Detect and respond to lateral movement attempts in the east-1 subnet."
130
+ inputs = tokenizer(prompt, return_tensors="pt")
131
+ outputs = model.generate(**inputs)
132
+ print(tokenizer.decode(outputs[0]))