File size: 14,223 Bytes
29df6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
---
license: apache-2.0
datasets:
  - AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations
language:
  - en
pipeline_tag: text-generation
tags:
  - mixture-of-experts
  - moe
  - expert-pruning
  - gpt-oss
  - openai
  - reasoning
  - math
  - specialized
  - efficient
  - transformer
  - causal-lm
  - text-generation
  - pytorch
  - pruned-model
  - domain-specific
---

# Math GPT-OSS Model (23 Experts)

**Project**: https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/

<div align="center">

### 👥 Follow the Authors

**Aman Priyanshu**
[![LinkedIn](https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/aman-priyanshu/)
[![Twitter](https://img.shields.io/badge/Twitter-1DA1F2?style=for-the-badge&logo=twitter&logoColor=white)](https://x.com/AmanPriyanshu6)
[![Website](https://img.shields.io/badge/Website-FF7139?style=for-the-badge&logo=firefox&logoColor=white)](https://amanpriyanshu.github.io/)

**Supriti Vijay**
[![LinkedIn](https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/supriti-vijay/)
[![Twitter](https://img.shields.io/badge/Twitter-1DA1F2?style=for-the-badge&logo=twitter&logoColor=white)](https://x.com/SupritiVijay)
[![Website](https://img.shields.io/badge/Website-FF7139?style=for-the-badge&logo=firefox&logoColor=white)](https://supritivijay.github.io/)

</div>

## Introduction

This is a pruned variant of OpenAI's GPT-OSS-20B model, reduced to 23 experts per layer based on activation patterns from the [AmanPriyanshu/GPT-OSS-20B MoE Expert Activations dataset](https://huggingface.co/datasets/AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations). We analyzed router decisions across evaluation benchmarks to identify and retain experts most relevant for math tasks.

**⚠️ Experimental Model**: This is an experimental pruned model that may not work well - check the [examples below](#model-examples) to see if the outputs meet your needs before use.

This pruning approach reduces the model size while attempting to preserve performance on the target domain.

## Model Architecture & Statistics

| Metric | Value |
|--------|-------|
| **Base Model** | openai/gpt-oss-20b |
| **Architecture** | Mixture-of-Experts Transformer |
| **Total Parameters** | ~15.5B (pruned from 21B) |
| **Original Experts per Layer** | 32 |
| **Pruned Experts per Layer** | 23 |
| **Layers** | 24 |
| **Top-k Routing** | 4 |
| **Context Length** | 128K tokens |
| **Attention Heads** | 64 (Query), 8 (Key-Value) |
| **Residual Dimension** | 2880 |
| **Attention Pattern** | Alternating dense & sliding window (128 tokens) |
| **Positional Encoding** | RoPE (Rotary Position Embedding) |
| **Normalization** | RMSNorm |
| **Precision** | BF16 |
| **License** | Apache 2.0 |
| **Specialization** | Math |

## Pruning Methodology

### What is Expert Pruning?
Mixture-of-Experts models contain multiple specialized sub-networks (experts) per layer. During inference, only a subset of experts are activated for each token. Expert pruning involves:

1. **Analyzing Usage Patterns**: Tracking which experts activate most frequently for specific tasks
2. **Removing Underutilized Experts**: Discarding experts with low activation rates for the target domain
3. **Preserving Router Functionality**: Maintaining the routing mechanism with fewer available experts

### Our Approach
- **Data-Driven Selection**: Used activation patterns from math evaluation tasks
- **Systematic Reduction**: Reduced from 32 to 23 experts per layer
- **No Retraining**: Direct removal without additional training steps

## Performance & Applications

### Pruning Benefits
- **Smaller Memory Footprint**: 71.9% of original expert parameters
- **Reduced Computational Load**: Fewer routing decisions during inference
- **Focused Capabilities**: Retains experts relevant to math tasks

### Use Cases
- **Speculative Decoding**: Draft model for full GPT-OSS-20B
- **Resource-Constrained Deployment**: Edge devices, mobile applications
- **Research**: Study expert specialization in MoE models
- **Fine-tuning**: Smaller base model for domain adaptation

*Note: Performance may vary depending on how well the pruned experts match your specific use case.*

## Motivation & Expert Selection

This mathematics-focused model utilizes experts that exhibited strong performance on mathematical reasoning tasks from MMLU mathematics subjects and quantitative sections. These experts excel at mathematical computation, proof strategies, and logical reasoning.

The expert selection process utilized our comprehensive analysis of router activation patterns across multiple evaluation benchmarks:

- **GPQA**: Graduate-level questions in physics, chemistry, biology (Diamond & Expert subsets)
- **MMLU/MMLU-Pro**: Comprehensive knowledge across 57+ subjects including science, medicine, law
- **SORRY-Bench**: Safety evaluation across harmful content categories  
- **Tulu3**: Persona-driven instruction following with verifiable constraints
- **Polyglot-or-Not**: Multilingual factual completion tasks

By identifying experts that consistently activated for math tasks, we created this specialized model that maintains domain expertise while significantly reducing computational requirements from 32 to 23 experts per layer.

## Dataset & Analysis Foundation

This model is based on analysis from the **GPT-OSS-20B MoE Expert Activations dataset** available at:
🔗 **https://huggingface.co/datasets/AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations**

The dataset contains router activation patterns from OpenAI's GPT-OSS-20B model across diverse evaluation benchmarks, enabling the creation of these domain-optimized models through systematic expert pruning.

### Pruning Methodology
Our approach involves:
1. **Activation Analysis**: Comprehensive evaluation of expert usage patterns across domain-specific tasks
2. **Expert Ranking**: Identification of the most frequently activated experts for target domains  
3. **Systematic Pruning**: Reduction from 32 to 23 experts while preserving router functionality
4. **Quality Validation**: Testing to ensure maintained performance on target tasks

*This is a direct pruning approach - no additional training was performed. The model inherits all capabilities from the original GPT-OSS-20B with focused expert selection.*

## Usage

### CPU Inference

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load the specialized model on CPU
model = AutoModelForCausalLM.from_pretrained(
    "AmanPriyanshu/gpt-oss-15.5b-specialized-math-pruned-moe-only-23-experts", 
    torch_dtype=torch.bfloat16, 
    device_map="cpu", 
    trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("AmanPriyanshu/gpt-oss-15.5b-specialized-math-pruned-moe-only-23-experts")

# Generate with the model
messages = [
    {"role": "user", "content": "Solve this equation: 2x + 5 = 17. Show your work step by step."}
]

inputs = tokenizer.apply_chat_template(
    messages, 
    add_generation_prompt=True, 
    return_tensors="pt", 
    return_dict=True,
    reasoning_effort="medium"
)

# Ensure inputs are on the same device as model
inputs = {k: v.to(model.device) for k, v in inputs.items()}

outputs = model.generate(
    **inputs, 
    max_new_tokens=512,
    do_sample=True,
    temperature=0.1,
    top_p=0.9,
    pad_token_id=tokenizer.eos_token_id,
    eos_token_id=tokenizer.eos_token_id
)

# Decode only the generated part
input_length = inputs['input_ids'].shape[1]
response_tokens = outputs[0][input_length:]
response = tokenizer.decode(response_tokens, skip_special_tokens=True)
print(response)
```

### Apple Silicon (MPS) Inference

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Check MPS availability and load model
device = "mps" if torch.backends.mps.is_available() else "cpu"

model = AutoModelForCausalLM.from_pretrained(
    "AmanPriyanshu/gpt-oss-15.5b-specialized-math-pruned-moe-only-23-experts", 
    torch_dtype=torch.float16,  # Better MPS compatibility
    device_map=device, 
    trust_remote_code=True,
    low_cpu_mem_usage=True
)
tokenizer = AutoTokenizer.from_pretrained("AmanPriyanshu/gpt-oss-15.5b-specialized-math-pruned-moe-only-23-experts")

# Generate with the model
messages = [
    {"role": "user", "content": "Solve this equation: 2x + 5 = 17. Show your work step by step."}
]

inputs = tokenizer.apply_chat_template(
    messages, 
    add_generation_prompt=True, 
    return_tensors="pt", 
    return_dict=True,
    reasoning_effort="medium"
)

# Move inputs to model device
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}

# Use torch.no_grad for MPS stability
with torch.no_grad():
    outputs = model.generate(
        **inputs, 
        max_new_tokens=512,
        do_sample=True,
        temperature=0.1,
        top_p=0.9,
        pad_token_id=tokenizer.eos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        use_cache=True
    )

# Decode only the generated part
input_length = inputs['input_ids'].shape[1]
response_tokens = outputs[0][input_length:]
response = tokenizer.decode(response_tokens, skip_special_tokens=True)
print(response)
```

### GPU Inference

For CUDA GPU inference, the models work with minimal modifications from the CPU example above. Simply change:
```python
device_map="auto"  # Will automatically use GPU if available
torch_dtype=torch.bfloat16  # or torch.float16
```

## Model Examples

The following examples demonstrate the model's performance on math tasks:

### Example 1
**Question:** Solve this equation: 2x + 5 = 17. Show your work step by step.

**Response:**
```
<|channel|>analysis<|message|>Just solve linear.<|end|><|start|>assistant<|channel|>final<|message|>Sure! Let’s solve the equation step by step.

**Equation**

\[
2x + 5 = 17
\]

---

### Step 1: Isolate the term with \(x\)

We want all terms containing \(x\) on one side and the constants on the other side.  
Subtract \(5\) from both sides:

\[
2x + 5 - 5 = 17 - 5
\]

\[
2x = 12
\]

---

### Step 2: Solve for \(x\)

Now divide both sides by the coefficient of \(x\), which is \(2\):

\[
\frac{2x}{2} = \frac{12}{2}
\]

\[
x = 6
\]

---

### Step 3: Check the solution

Plug \(x = 6\) back into the original equation:

\[
2(6) + 5 = 12 + 5 = 17
\]

The left side equals the right side, so the solution is correct.

---

\[
\boxed{x = 6}
\]<|return|>
```

---

### Example 2
**Question:** What is the Pythagorean theorem and how is it used?

**Response:**
```
<|channel|>analysis<|message|>Need explain theorem and usage.<|end|><|start|>assistant<|channel|>final<|message|>**The Pythagorean Theorem**

> In a right‑angled triangle, the square of the length of the hypotenuse (the side opposite the right angle) equals the sum of the squares of the lengths of the other two sides.

Mathematically:

\[
a^{2} + b^{2} = c^{2}
\]

where  
- \(a\) and \(b\) are the legs (the two sides that form the right angle),  
- \(c\) is the hypotenuse.

---

### How It Is Used

| Context | What you do | Example |
|---------|-------------|---------|
| **Geometry** | Find a missing side of a right triangle | If \(a=3\) m, \(b=4\) m, then \(c=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5\) m. |
| **Measurement** | Verify if a triangle is right‑angled | Measure sides \(5\), \(12\), \(13\). Since \(5^{2}+12^{2}=13^{2}\), the triangle is right‑angled. |
| **Engineering & Architecture** | Design right‑angled structures, calculate diagonal lengths, or check structural integrity. | A roof truss with legs 6 m and 8 m has a diagonal of 10 m. |
| **Navigation & Surveying** | Compute straight‑line distances (great‑circle approximations, planar maps). | Find the straight distance between two points on a map when you know the east‑west and north‑south separations. |
| **Computer Graphics & Animation** | Determine distances, normalize vectors, or compute lighting angles. | The distance between two pixels \((x_1,y_1)\) and \((x_2,y_2)\) is \(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\). |
| **Physics** | Resolve forces, calculate velocities, or analyze motion in perpendicular directions. | The resultant speed of an object moving 3 m/s east and 4 m/s north is \(5\) m/s. |
| **Education** | Introduce algebraic reasoning, proof techniques, and problem‑solving skills. | Proving that the area of a square built on the hypotenuse equals
```

---

### Example 3
**Question:** Calculate the area of a circle with radius 7 meters.

**Response:**
```
<|channel|>analysis<|message|>Compute area πr^2 = π*49 ≈ 153.938.<|end|><|start|>assistant<|channel|>final<|message|>The area \(A\) of a circle is given by

\[
A = \pi r^{2}
\]

where \(r\) is the radius.

For a radius of \(7\) m:

\[
A = \pi (7\ \text{m})^{2}
   = \pi \times 49\ \text{m}^{2}
   = 49\pi\ \text{m}^{2}
\]

Using \(\pi \approx 3.14159\):

\[
A \approx 49 \times 3.14159 \ \text{m}^{2}
   \approx 153.938\ \text{m}^{2}
\]

So the circle’s area is **\(49\pi\) square meters**, or about **\(154\ \text{m}^{2}\)** when rounded to the nearest whole number.<|return|>
```

---

## Citation

If you use this model in your research, please cite:

```bibtex
@misc{priyanshu2025gptoss,
  title={{GPT-OSS MoE Expert Fingerprinting: Analyzing Expert Activation Patterns in Mixture of Experts Models}},
  author={Priyanshu, Aman and Vijay, Supriti},
  year={2025},
  howpublished={\url{https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/}},
  note={Interactive analysis tool for expert activation patterns in MoE architectures}
}
```

## References & Resources

- **Original Model**: [OpenAI GPT-OSS Model Card](https://openai.com/index/introducing-gpt-oss/)
- **Model Hub**: [GPT-OSS-20B on Hugging Face](https://huggingface.co/openai/gpt-oss-20b)
- **Expert Analysis Dataset**: [GPT-OSS-20B MoE Expert Activations](https://huggingface.co/datasets/AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations)
- **Project Page**: [GPT-OSS MoE Expert Fingerprinting](https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/)
- **GitHub Repository**: [OpenAI GPT-OSS](https://github.com/openai/gpt-oss)