File size: 14,024 Bytes
e3e2036 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
---
license: apache-2.0
datasets:
- AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations
language:
- en
pipeline_tag: text-generation
tags:
- mixture-of-experts
- moe
- expert-pruning
- gpt-oss
- openai
- reasoning
- math
- specialized
- efficient
- transformer
- causal-lm
- text-generation
- pytorch
- pruned-model
- domain-specific
---
# Math GPT-OSS Model (25 Experts)
**Project**: https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/
<div align="center">
### 👥 Follow the Authors
**Aman Priyanshu**
[](https://www.linkedin.com/in/aman-priyanshu/)
[](https://x.com/AmanPriyanshu6)
[](https://amanpriyanshu.github.io/)
**Supriti Vijay**
[](https://www.linkedin.com/in/supriti-vijay/)
[](https://x.com/SupritiVijay)
[](https://supritivijay.github.io/)
</div>
## Introduction
This is a pruned variant of OpenAI's GPT-OSS-20B model, reduced to 25 experts per layer based on activation patterns from the [AmanPriyanshu/GPT-OSS-20B MoE Expert Activations dataset](https://huggingface.co/datasets/AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations). We analyzed router decisions across evaluation benchmarks to identify and retain experts most relevant for math tasks.
**⚠️ Experimental Model**: This is an experimental pruned model that may not work well - check the [examples below](#model-examples) to see if the outputs meet your needs before use.
This pruning approach reduces the model size while attempting to preserve performance on the target domain.
## Model Architecture & Statistics
| Metric | Value |
|--------|-------|
| **Base Model** | openai/gpt-oss-20b |
| **Architecture** | Mixture-of-Experts Transformer |
| **Total Parameters** | ~16.7B (pruned from 21B) |
| **Original Experts per Layer** | 32 |
| **Pruned Experts per Layer** | 25 |
| **Layers** | 24 |
| **Top-k Routing** | 4 |
| **Context Length** | 128K tokens |
| **Attention Heads** | 64 (Query), 8 (Key-Value) |
| **Residual Dimension** | 2880 |
| **Attention Pattern** | Alternating dense & sliding window (128 tokens) |
| **Positional Encoding** | RoPE (Rotary Position Embedding) |
| **Normalization** | RMSNorm |
| **Precision** | BF16 |
| **License** | Apache 2.0 |
| **Specialization** | Math |
## Pruning Methodology
### What is Expert Pruning?
Mixture-of-Experts models contain multiple specialized sub-networks (experts) per layer. During inference, only a subset of experts are activated for each token. Expert pruning involves:
1. **Analyzing Usage Patterns**: Tracking which experts activate most frequently for specific tasks
2. **Removing Underutilized Experts**: Discarding experts with low activation rates for the target domain
3. **Preserving Router Functionality**: Maintaining the routing mechanism with fewer available experts
### Our Approach
- **Data-Driven Selection**: Used activation patterns from math evaluation tasks
- **Systematic Reduction**: Reduced from 32 to 25 experts per layer
- **No Retraining**: Direct removal without additional training steps
## Performance & Applications
### Pruning Benefits
- **Smaller Memory Footprint**: 78.1% of original expert parameters
- **Reduced Computational Load**: Fewer routing decisions during inference
- **Focused Capabilities**: Retains experts relevant to math tasks
### Use Cases
- **Speculative Decoding**: Draft model for full GPT-OSS-20B
- **Resource-Constrained Deployment**: Edge devices, mobile applications
- **Research**: Study expert specialization in MoE models
- **Fine-tuning**: Smaller base model for domain adaptation
*Note: Performance may vary depending on how well the pruned experts match your specific use case.*
## Motivation & Expert Selection
This mathematics-focused model utilizes experts that exhibited strong performance on mathematical reasoning tasks from MMLU mathematics subjects and quantitative sections. These experts excel at mathematical computation, proof strategies, and logical reasoning.
The expert selection process utilized our comprehensive analysis of router activation patterns across multiple evaluation benchmarks:
- **GPQA**: Graduate-level questions in physics, chemistry, biology (Diamond & Expert subsets)
- **MMLU/MMLU-Pro**: Comprehensive knowledge across 57+ subjects including science, medicine, law
- **SORRY-Bench**: Safety evaluation across harmful content categories
- **Tulu3**: Persona-driven instruction following with verifiable constraints
- **Polyglot-or-Not**: Multilingual factual completion tasks
By identifying experts that consistently activated for math tasks, we created this specialized model that maintains domain expertise while significantly reducing computational requirements from 32 to 25 experts per layer.
## Dataset & Analysis Foundation
This model is based on analysis from the **GPT-OSS-20B MoE Expert Activations dataset** available at:
🔗 **https://huggingface.co/datasets/AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations**
The dataset contains router activation patterns from OpenAI's GPT-OSS-20B model across diverse evaluation benchmarks, enabling the creation of these domain-optimized models through systematic expert pruning.
### Pruning Methodology
Our approach involves:
1. **Activation Analysis**: Comprehensive evaluation of expert usage patterns across domain-specific tasks
2. **Expert Ranking**: Identification of the most frequently activated experts for target domains
3. **Systematic Pruning**: Reduction from 32 to 25 experts while preserving router functionality
4. **Quality Validation**: Testing to ensure maintained performance on target tasks
*This is a direct pruning approach - no additional training was performed. The model inherits all capabilities from the original GPT-OSS-20B with focused expert selection.*
## Usage
### CPU Inference
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load the specialized model on CPU
model = AutoModelForCausalLM.from_pretrained(
"AmanPriyanshu/gpt-oss-16.7b-specialized-math-pruned-moe-only-25-experts",
torch_dtype=torch.bfloat16,
device_map="cpu",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("AmanPriyanshu/gpt-oss-16.7b-specialized-math-pruned-moe-only-25-experts")
# Generate with the model
messages = [
{"role": "user", "content": "Solve this equation: 2x + 5 = 17. Show your work step by step."}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
reasoning_effort="medium"
)
# Ensure inputs are on the same device as model
inputs = {k: v.to(model.device) for k, v in inputs.items()}
outputs = model.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
temperature=0.1,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
# Decode only the generated part
input_length = inputs['input_ids'].shape[1]
response_tokens = outputs[0][input_length:]
response = tokenizer.decode(response_tokens, skip_special_tokens=True)
print(response)
```
### Apple Silicon (MPS) Inference
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Check MPS availability and load model
device = "mps" if torch.backends.mps.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(
"AmanPriyanshu/gpt-oss-16.7b-specialized-math-pruned-moe-only-25-experts",
torch_dtype=torch.float16, # Better MPS compatibility
device_map=device,
trust_remote_code=True,
low_cpu_mem_usage=True
)
tokenizer = AutoTokenizer.from_pretrained("AmanPriyanshu/gpt-oss-16.7b-specialized-math-pruned-moe-only-25-experts")
# Generate with the model
messages = [
{"role": "user", "content": "Solve this equation: 2x + 5 = 17. Show your work step by step."}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
reasoning_effort="medium"
)
# Move inputs to model device
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
# Use torch.no_grad for MPS stability
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
temperature=0.1,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True
)
# Decode only the generated part
input_length = inputs['input_ids'].shape[1]
response_tokens = outputs[0][input_length:]
response = tokenizer.decode(response_tokens, skip_special_tokens=True)
print(response)
```
### GPU Inference
For CUDA GPU inference, the models work with minimal modifications from the CPU example above. Simply change:
```python
device_map="auto" # Will automatically use GPU if available
torch_dtype=torch.bfloat16 # or torch.float16
```
## Model Examples
The following examples demonstrate the model's performance on math tasks:
### Example 1
**Question:** Solve this equation: 2x + 5 = 17. Show your work step by step.
**Response:**
```
<|channel|>analysis<|message|>Just solve linear equation.<|end|><|start|>assistant<|channel|>final<|message|>**Equation to solve**
\[
2x + 5 = 17
\]
---
### Step 1: Isolate the term containing \(x\)
Subtract \(5\) from both sides of the equation to get the \(x\)-term alone on the left:
\[
2x + 5 - 5 = 17 - 5
\]
\[
2x = 12
\]
---
### Step 2: Solve for \(x\)
Divide both sides by the coefficient of \(x\), which is \(2\):
\[
\frac{2x}{2} = \frac{12}{2}
\]
\[
x = 6
\]
---
### Check the solution
Plug \(x = 6\) back into the original equation:
\[
2(6) + 5 = 12 + 5 = 17
\]
The left‑hand side equals the right‑hand side, so the solution is correct.
---
\[
\boxed{x = 6}
\]<|return|>
```
---
### Example 2
**Question:** What is the Pythagorean theorem and how is it used?
**Response:**
```
<|channel|>analysis<|message|>Need explain theorem and usage.<|end|><|start|>assistant<|channel|>final<|message|>**The Pythagorean Theorem**
> In a right‑angled triangle, the square of the length of the hypotenuse (the side opposite the right angle) equals the sum of the squares of the lengths of the other two sides.
Mathematically:
\[
c^{2}=a^{2}+b^{2}
\]
where
- \(c\) = length of the hypotenuse,
- \(a\) and \(b\) = lengths of the two legs.
---
### How It Is Used
| Context | What you do | Example |
|---------|-------------|---------|
| **Geometry** | Find a missing side of a right triangle | If \(a=3\) m, \(b=4\) m, then \(c=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5\) m. |
| **Engineering** | Design right‑angled structures (e.g., ladders, roofs) | Determine the minimum ladder length needed to reach a height of 10 m on a 6 m wall: \(c=\sqrt{10^{2}+6^{2}}\approx 11.66\) m. |
| **Navigation & Surveying** | Compute straight‑line distances (great‑circle distance approximations) | Use the theorem on a planar map to estimate the shortest path between two points. |
| **Computer Graphics** | Calculate pixel distances, collision detection | Distance between two points \((x_1,y_1)\) and \((x_2,y_2)\): \(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\). |
| **Physics** | Resolve vectors into perpendicular components | If a force has components \(F_x\) and \(F_y\), its magnitude is \(\sqrt{F_x^2+F_y^2}\). |
| **Trigonometry** | Derive relationships between sine, cosine, and tangent | From \(c^2=a^2+b^2\) and \(a=c\cos\theta\), \(b=c\sin\theta\), we get \(\sin^2\theta+\cos^2\theta=1\). |
| **Computer Science** | Euclidean distance in higher‑dimensional spaces | For vectors \(\mathbf{u}\) and \
```
---
### Example 3
**Question:** Calculate the area of a circle with radius 7 meters.
**Response:**
```
<|channel|>analysis<|message|>Compute area πr^2 = π*49 ≈ 153.938.<|end|><|start|>assistant<|channel|>final<|message|>The area \(A\) of a circle is given by
\[
A = \pi r^{2}
\]
where \(r\) is the radius.
For a radius of \(r = 7\) m:
\[
A = \pi (7\,\text{m})^{2}
= \pi \times 49\,\text{m}^{2}
= 49\pi \,\text{m}^{2}
\]
Using \(\pi \approx 3.14159\):
\[
A \approx 49 \times 3.14159 \;\text{m}^{2}
\approx 153.938 \;\text{m}^{2}
\]
So the area of the circle is **\(49\pi\) square meters**, which is approximately **\(154\) m²** (rounded to the nearest whole number).<|return|>
```
---
## Citation
If you use this model in your research, please cite:
```bibtex
@misc{priyanshu2025gptoss,
title={{GPT-OSS MoE Expert Fingerprinting: Analyzing Expert Activation Patterns in Mixture of Experts Models}},
author={Priyanshu, Aman and Vijay, Supriti},
year={2025},
howpublished={\url{https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/}},
note={Interactive analysis tool for expert activation patterns in MoE architectures}
}
```
## References & Resources
- **Original Model**: [OpenAI GPT-OSS Model Card](https://openai.com/index/introducing-gpt-oss/)
- **Model Hub**: [GPT-OSS-20B on Hugging Face](https://huggingface.co/openai/gpt-oss-20b)
- **Expert Analysis Dataset**: [GPT-OSS-20B MoE Expert Activations](https://huggingface.co/datasets/AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations)
- **Project Page**: [GPT-OSS MoE Expert Fingerprinting](https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/)
- **GitHub Repository**: [OpenAI GPT-OSS](https://github.com/openai/gpt-oss)
|