AmberYifan commited on
Commit
74a4055
·
verified ·
1 Parent(s): 938e911

Training in progress, epoch 1, checkpoint

Browse files
Files changed (32) hide show
  1. .gitattributes +1 -0
  2. last-checkpoint/added_tokens.json +24 -0
  3. last-checkpoint/chat_template.jinja +54 -0
  4. last-checkpoint/config.json +58 -0
  5. last-checkpoint/generation_config.json +14 -0
  6. last-checkpoint/global_step548/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  7. last-checkpoint/global_step548/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  8. last-checkpoint/global_step548/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  9. last-checkpoint/global_step548/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  10. last-checkpoint/global_step548/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  11. last-checkpoint/global_step548/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  12. last-checkpoint/global_step548/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  13. last-checkpoint/global_step548/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  14. last-checkpoint/latest +1 -0
  15. last-checkpoint/merges.txt +0 -0
  16. last-checkpoint/model-00001-of-00004.safetensors +3 -0
  17. last-checkpoint/model-00002-of-00004.safetensors +3 -0
  18. last-checkpoint/model-00003-of-00004.safetensors +3 -0
  19. last-checkpoint/model-00004-of-00004.safetensors +3 -0
  20. last-checkpoint/model.safetensors.index.json +347 -0
  21. last-checkpoint/rng_state_0.pth +3 -0
  22. last-checkpoint/rng_state_1.pth +3 -0
  23. last-checkpoint/rng_state_2.pth +3 -0
  24. last-checkpoint/rng_state_3.pth +3 -0
  25. last-checkpoint/scheduler.pt +3 -0
  26. last-checkpoint/special_tokens_map.json +31 -0
  27. last-checkpoint/tokenizer.json +3 -0
  28. last-checkpoint/tokenizer_config.json +207 -0
  29. last-checkpoint/trainer_state.json +875 -0
  30. last-checkpoint/training_args.bin +3 -0
  31. last-checkpoint/vocab.json +0 -0
  32. last-checkpoint/zero_to_fp32.py +760 -0
.gitattributes CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ last-checkpoint/tokenizer.json filter=lfs diff=lfs merge=lfs -text
last-checkpoint/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
last-checkpoint/chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
last-checkpoint/config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 3584,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 18944,
12
+ "layer_types": [
13
+ "full_attention",
14
+ "full_attention",
15
+ "full_attention",
16
+ "full_attention",
17
+ "full_attention",
18
+ "full_attention",
19
+ "full_attention",
20
+ "full_attention",
21
+ "full_attention",
22
+ "full_attention",
23
+ "full_attention",
24
+ "full_attention",
25
+ "full_attention",
26
+ "full_attention",
27
+ "full_attention",
28
+ "full_attention",
29
+ "full_attention",
30
+ "full_attention",
31
+ "full_attention",
32
+ "full_attention",
33
+ "full_attention",
34
+ "full_attention",
35
+ "full_attention",
36
+ "full_attention",
37
+ "full_attention",
38
+ "full_attention",
39
+ "full_attention",
40
+ "full_attention"
41
+ ],
42
+ "max_position_embeddings": 32768,
43
+ "max_window_layers": 28,
44
+ "model_type": "qwen2",
45
+ "num_attention_heads": 28,
46
+ "num_hidden_layers": 28,
47
+ "num_key_value_heads": 4,
48
+ "rms_norm_eps": 1e-06,
49
+ "rope_scaling": null,
50
+ "rope_theta": 1000000.0,
51
+ "sliding_window": null,
52
+ "tie_word_embeddings": false,
53
+ "torch_dtype": "bfloat16",
54
+ "transformers_version": "4.53.3",
55
+ "use_cache": false,
56
+ "use_sliding_window": false,
57
+ "vocab_size": 152064
58
+ }
last-checkpoint/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.53.3"
14
+ }
last-checkpoint/global_step548/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bea983d7491688a0552b3da916b5a27fdded4c049f300653e4613b5fc6e45cd6
3
+ size 15231238785
last-checkpoint/global_step548/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84ff4803e050b2baa600256daeaed70209b10da80cfeac246152bda1640cbed0
3
+ size 15231238785
last-checkpoint/global_step548/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b825f7ca7c788b5126430d26960ae7f530ee86bcf34e92df9b97d4a74e25c12
3
+ size 15231238785
last-checkpoint/global_step548/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcad61a5ceb64ff1a0126c2f0e35219b7a6cf269167387a5dc839e246b417927
3
+ size 15231238785
last-checkpoint/global_step548/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfd2d47fdc7c492c9b3839800aad7cbc32a34b316cad7d49eceae3529f84d20d
3
+ size 166752
last-checkpoint/global_step548/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b674de1a790cd800fe11bd9a09d5109af8b3cf0286f823f85f71bf007290ddac
3
+ size 166752
last-checkpoint/global_step548/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb0733dd6c787de73648ca4373e8e7b552f88b77f685f7fad97d68cfbe2d700b
3
+ size 166752
last-checkpoint/global_step548/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14b580a4016c7215787acfa0d4a199d32c40c7309a90b7428b87b425c0caf898
3
+ size 166752
last-checkpoint/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step548
last-checkpoint/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80521f6c900143697281d4600e67ab315c8b71bceacee150223128239ef99971
3
+ size 4877660776
last-checkpoint/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d128d9387aa00a908f5968a815f0cef17c472e7d1e80e69541de184041a20f31
3
+ size 4932751008
last-checkpoint/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dd6ca393d0c46fcf5d9d2480065f288ab16af2e24809caaffb4d02dec32aa4c
3
+ size 4330865200
last-checkpoint/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6044a4ba978cea9f0c0999cc35796dd6b3ddb394eaf324bd9a97964684038828
3
+ size 1089994880
last-checkpoint/model.safetensors.index.json ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 333312,
4
+ "total_size": 15231233024
5
+ },
6
+ "weight_map": {
7
+ "lm_head.weight": "model-00004-of-00004.safetensors",
8
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
20
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
32
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
33
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
44
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
56
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
68
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
80
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
92
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
104
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
116
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
128
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
140
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
141
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
152
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
164
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
165
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
176
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
188
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
200
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
212
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
224
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
236
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
248
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
260
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
272
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
284
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
296
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
308
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
320
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
321
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
332
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
333
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
344
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
345
+ "model.norm.weight": "model-00003-of-00004.safetensors"
346
+ }
347
+ }
last-checkpoint/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fe6b873f1da64bb980afe982fc1c6b6bc461ad8c33073d856804323f64b26d9
3
+ size 15429
last-checkpoint/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13db4dd10b22b5464f5ef0b539152b46390eae6a827b355108cb54b1af2eb830
3
+ size 15429
last-checkpoint/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06e293f13fb6e873e8081636b6b07115410b397c55f1ed08b8772b059c8eb74e
3
+ size 15429
last-checkpoint/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c595c077664f94b7f91088561951be20e39483e01865774a83bc46f3971a3152
3
+ size 15429
last-checkpoint/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91f5b063c2f54dad51b7840e2f9b7461a9e5e558bbc9181e07f8ad10df71ba3e
3
+ size 1465
last-checkpoint/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
last-checkpoint/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
last-checkpoint/tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "extra_special_tokens": {},
202
+ "model_max_length": 2048,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,875 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 500,
7
+ "global_step": 548,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0018248175182481751,
14
+ "grad_norm": 183.4268798763667,
15
+ "learning_rate": 0.0,
16
+ "logits/chosen": -0.486328125,
17
+ "logits/rejected": -0.65234375,
18
+ "logps/chosen": -1016.0,
19
+ "logps/rejected": -908.0,
20
+ "loss": 0.6914,
21
+ "rewards/accuracies": 0.0,
22
+ "rewards/chosen": 0.0,
23
+ "rewards/margins": 0.0,
24
+ "rewards/rejected": 0.0,
25
+ "step": 1
26
+ },
27
+ {
28
+ "epoch": 0.01824817518248175,
29
+ "grad_norm": 190.79059532204576,
30
+ "learning_rate": 8.181818181818182e-08,
31
+ "logits/chosen": -0.9583333134651184,
32
+ "logits/rejected": -0.8624131679534912,
33
+ "logps/chosen": -399.3333435058594,
34
+ "logps/rejected": -353.1111145019531,
35
+ "loss": 0.7228,
36
+ "rewards/accuracies": 0.1805555522441864,
37
+ "rewards/chosen": -0.01952446810901165,
38
+ "rewards/margins": -0.0528903529047966,
39
+ "rewards/rejected": 0.0333658866584301,
40
+ "step": 10
41
+ },
42
+ {
43
+ "epoch": 0.0364963503649635,
44
+ "grad_norm": 200.0933911782489,
45
+ "learning_rate": 1.7272727272727272e-07,
46
+ "logits/chosen": -0.7900390625,
47
+ "logits/rejected": -0.792773425579071,
48
+ "logps/chosen": -512.0,
49
+ "logps/rejected": -455.79998779296875,
50
+ "loss": 0.6865,
51
+ "rewards/accuracies": 0.3499999940395355,
52
+ "rewards/chosen": 0.09881591796875,
53
+ "rewards/margins": 0.02115478552877903,
54
+ "rewards/rejected": 0.07758178561925888,
55
+ "step": 20
56
+ },
57
+ {
58
+ "epoch": 0.05474452554744526,
59
+ "grad_norm": 137.2607562201183,
60
+ "learning_rate": 2.636363636363636e-07,
61
+ "logits/chosen": -0.839160144329071,
62
+ "logits/rejected": -0.898242175579071,
63
+ "logps/chosen": -380.6000061035156,
64
+ "logps/rejected": -331.3999938964844,
65
+ "loss": 0.6383,
66
+ "rewards/accuracies": 0.5625,
67
+ "rewards/chosen": 0.5669921636581421,
68
+ "rewards/margins": 0.1439208984375,
69
+ "rewards/rejected": 0.4232421815395355,
70
+ "step": 30
71
+ },
72
+ {
73
+ "epoch": 0.072992700729927,
74
+ "grad_norm": 83.1602987250809,
75
+ "learning_rate": 3.545454545454545e-07,
76
+ "logits/chosen": -0.7520507574081421,
77
+ "logits/rejected": -0.891796886920929,
78
+ "logps/chosen": -440.3999938964844,
79
+ "logps/rejected": -381.79998779296875,
80
+ "loss": 0.5843,
81
+ "rewards/accuracies": 0.7124999761581421,
82
+ "rewards/chosen": 1.085546851158142,
83
+ "rewards/margins": 0.4743408262729645,
84
+ "rewards/rejected": 0.61279296875,
85
+ "step": 40
86
+ },
87
+ {
88
+ "epoch": 0.09124087591240876,
89
+ "grad_norm": 72.42686849970667,
90
+ "learning_rate": 4.4545454545454544e-07,
91
+ "logits/chosen": -0.5654296875,
92
+ "logits/rejected": -0.6791015863418579,
93
+ "logps/chosen": -484.0,
94
+ "logps/rejected": -410.6000061035156,
95
+ "loss": 0.5111,
96
+ "rewards/accuracies": 0.7124999761581421,
97
+ "rewards/chosen": 1.700781226158142,
98
+ "rewards/margins": 0.850634753704071,
99
+ "rewards/rejected": 0.850390613079071,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.10948905109489052,
104
+ "grad_norm": 85.28805875692137,
105
+ "learning_rate": 4.959432048681541e-07,
106
+ "logits/chosen": -0.516406238079071,
107
+ "logits/rejected": -0.570239245891571,
108
+ "logps/chosen": -376.79998779296875,
109
+ "logps/rejected": -328.29998779296875,
110
+ "loss": 0.437,
111
+ "rewards/accuracies": 0.75,
112
+ "rewards/chosen": 1.7800781726837158,
113
+ "rewards/margins": 0.961376965045929,
114
+ "rewards/rejected": 0.818359375,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.12773722627737227,
119
+ "grad_norm": 91.08005236458708,
120
+ "learning_rate": 4.858012170385395e-07,
121
+ "logits/chosen": -0.46367186307907104,
122
+ "logits/rejected": -0.4881347715854645,
123
+ "logps/chosen": -422.6000061035156,
124
+ "logps/rejected": -347.3999938964844,
125
+ "loss": 0.5437,
126
+ "rewards/accuracies": 0.675000011920929,
127
+ "rewards/chosen": 1.330078125,
128
+ "rewards/margins": 0.734570324420929,
129
+ "rewards/rejected": 0.595654308795929,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.145985401459854,
134
+ "grad_norm": 96.85867903332033,
135
+ "learning_rate": 4.7565922920892493e-07,
136
+ "logits/chosen": -0.4019775390625,
137
+ "logits/rejected": -0.43791502714157104,
138
+ "logps/chosen": -455.3999938964844,
139
+ "logps/rejected": -468.0,
140
+ "loss": 0.5068,
141
+ "rewards/accuracies": 0.737500011920929,
142
+ "rewards/chosen": 1.2746093273162842,
143
+ "rewards/margins": 0.9996093511581421,
144
+ "rewards/rejected": 0.27705079317092896,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.16423357664233576,
149
+ "grad_norm": 67.75491451556083,
150
+ "learning_rate": 4.655172413793103e-07,
151
+ "logits/chosen": -0.24169310927391052,
152
+ "logits/rejected": -0.29462891817092896,
153
+ "logps/chosen": -424.3999938964844,
154
+ "logps/rejected": -374.20001220703125,
155
+ "loss": 0.3807,
156
+ "rewards/accuracies": 0.800000011920929,
157
+ "rewards/chosen": 1.853124976158142,
158
+ "rewards/margins": 1.2941405773162842,
159
+ "rewards/rejected": 0.5595703125,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.18248175182481752,
164
+ "grad_norm": 93.30496706040954,
165
+ "learning_rate": 4.5537525354969567e-07,
166
+ "logits/chosen": -0.23894043266773224,
167
+ "logits/rejected": -0.25419920682907104,
168
+ "logps/chosen": -440.0,
169
+ "logps/rejected": -393.20001220703125,
170
+ "loss": 0.4229,
171
+ "rewards/accuracies": 0.699999988079071,
172
+ "rewards/chosen": 1.433203101158142,
173
+ "rewards/margins": 1.3212890625,
174
+ "rewards/rejected": 0.11308594048023224,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.20072992700729927,
179
+ "grad_norm": 62.86660194925304,
180
+ "learning_rate": 4.4523326572008114e-07,
181
+ "logits/chosen": -0.14438477158546448,
182
+ "logits/rejected": -0.25579530000686646,
183
+ "logps/chosen": -409.20001220703125,
184
+ "logps/rejected": -377.3999938964844,
185
+ "loss": 0.3675,
186
+ "rewards/accuracies": 0.7749999761581421,
187
+ "rewards/chosen": 1.952734351158142,
188
+ "rewards/margins": 1.849218726158142,
189
+ "rewards/rejected": 0.10541991889476776,
190
+ "step": 110
191
+ },
192
+ {
193
+ "epoch": 0.21897810218978103,
194
+ "grad_norm": 60.03776822417948,
195
+ "learning_rate": 4.350912778904665e-07,
196
+ "logits/chosen": -0.346923828125,
197
+ "logits/rejected": -0.3475585877895355,
198
+ "logps/chosen": -491.0,
199
+ "logps/rejected": -472.0,
200
+ "loss": 0.4935,
201
+ "rewards/accuracies": 0.699999988079071,
202
+ "rewards/chosen": 1.447265625,
203
+ "rewards/margins": 1.2218749523162842,
204
+ "rewards/rejected": 0.22526855766773224,
205
+ "step": 120
206
+ },
207
+ {
208
+ "epoch": 0.23722627737226276,
209
+ "grad_norm": 69.45442852616328,
210
+ "learning_rate": 4.249492900608519e-07,
211
+ "logits/chosen": -0.17467041313648224,
212
+ "logits/rejected": -0.20947265625,
213
+ "logps/chosen": -432.20001220703125,
214
+ "logps/rejected": -399.0,
215
+ "loss": 0.468,
216
+ "rewards/accuracies": 0.6875,
217
+ "rewards/chosen": 1.036718726158142,
218
+ "rewards/margins": 1.351953148841858,
219
+ "rewards/rejected": -0.313507080078125,
220
+ "step": 130
221
+ },
222
+ {
223
+ "epoch": 0.25547445255474455,
224
+ "grad_norm": 139.01818106445947,
225
+ "learning_rate": 4.148073022312373e-07,
226
+ "logits/chosen": -0.21988525986671448,
227
+ "logits/rejected": -0.26655274629592896,
228
+ "logps/chosen": -455.3999938964844,
229
+ "logps/rejected": -420.0,
230
+ "loss": 0.372,
231
+ "rewards/accuracies": 0.7749999761581421,
232
+ "rewards/chosen": 1.1648437976837158,
233
+ "rewards/margins": 1.658544898033142,
234
+ "rewards/rejected": -0.4948974549770355,
235
+ "step": 140
236
+ },
237
+ {
238
+ "epoch": 0.2737226277372263,
239
+ "grad_norm": 63.738656533900965,
240
+ "learning_rate": 4.046653144016227e-07,
241
+ "logits/chosen": -0.140167236328125,
242
+ "logits/rejected": -0.22265625,
243
+ "logps/chosen": -373.0,
244
+ "logps/rejected": -330.70001220703125,
245
+ "loss": 0.4044,
246
+ "rewards/accuracies": 0.7250000238418579,
247
+ "rewards/chosen": 1.3445312976837158,
248
+ "rewards/margins": 1.5832030773162842,
249
+ "rewards/rejected": -0.23894043266773224,
250
+ "step": 150
251
+ },
252
+ {
253
+ "epoch": 0.291970802919708,
254
+ "grad_norm": 58.53887833297566,
255
+ "learning_rate": 3.945233265720081e-07,
256
+ "logits/chosen": -0.18510742485523224,
257
+ "logits/rejected": -0.107086181640625,
258
+ "logps/chosen": -485.6000061035156,
259
+ "logps/rejected": -449.0,
260
+ "loss": 0.5703,
261
+ "rewards/accuracies": 0.6875,
262
+ "rewards/chosen": 1.7589843273162842,
263
+ "rewards/margins": 1.361425757408142,
264
+ "rewards/rejected": 0.3995117247104645,
265
+ "step": 160
266
+ },
267
+ {
268
+ "epoch": 0.3102189781021898,
269
+ "grad_norm": 91.87755966731375,
270
+ "learning_rate": 3.843813387423935e-07,
271
+ "logits/chosen": -0.23171386122703552,
272
+ "logits/rejected": -0.26677244901657104,
273
+ "logps/chosen": -465.20001220703125,
274
+ "logps/rejected": -475.20001220703125,
275
+ "loss": 0.4439,
276
+ "rewards/accuracies": 0.699999988079071,
277
+ "rewards/chosen": 1.56640625,
278
+ "rewards/margins": 1.7265625,
279
+ "rewards/rejected": -0.15704345703125,
280
+ "step": 170
281
+ },
282
+ {
283
+ "epoch": 0.3284671532846715,
284
+ "grad_norm": 101.70063789740826,
285
+ "learning_rate": 3.7423935091277887e-07,
286
+ "logits/chosen": -0.06843261420726776,
287
+ "logits/rejected": -0.13564452528953552,
288
+ "logps/chosen": -502.20001220703125,
289
+ "logps/rejected": -482.0,
290
+ "loss": 0.3524,
291
+ "rewards/accuracies": 0.800000011920929,
292
+ "rewards/chosen": 1.283593773841858,
293
+ "rewards/margins": 1.9167969226837158,
294
+ "rewards/rejected": -0.63427734375,
295
+ "step": 180
296
+ },
297
+ {
298
+ "epoch": 0.3467153284671533,
299
+ "grad_norm": 129.4709446137554,
300
+ "learning_rate": 3.640973630831643e-07,
301
+ "logits/chosen": -0.27153319120407104,
302
+ "logits/rejected": -0.21871337294578552,
303
+ "logps/chosen": -452.79998779296875,
304
+ "logps/rejected": -441.0,
305
+ "loss": 0.502,
306
+ "rewards/accuracies": 0.699999988079071,
307
+ "rewards/chosen": 1.521875023841858,
308
+ "rewards/margins": 1.573339819908142,
309
+ "rewards/rejected": -0.05205078050494194,
310
+ "step": 190
311
+ },
312
+ {
313
+ "epoch": 0.36496350364963503,
314
+ "grad_norm": 52.84176487442608,
315
+ "learning_rate": 3.5395537525354966e-07,
316
+ "logits/chosen": 0.02674560621380806,
317
+ "logits/rejected": -0.009631347842514515,
318
+ "logps/chosen": -454.20001220703125,
319
+ "logps/rejected": -382.20001220703125,
320
+ "loss": 0.4234,
321
+ "rewards/accuracies": 0.7749999761581421,
322
+ "rewards/chosen": 1.603906273841858,
323
+ "rewards/margins": 1.7890625,
324
+ "rewards/rejected": -0.18623046576976776,
325
+ "step": 200
326
+ },
327
+ {
328
+ "epoch": 0.38321167883211676,
329
+ "grad_norm": 64.84134129708892,
330
+ "learning_rate": 3.438133874239351e-07,
331
+ "logits/chosen": -0.18310546875,
332
+ "logits/rejected": -0.19301757216453552,
333
+ "logps/chosen": -411.79998779296875,
334
+ "logps/rejected": -366.3999938964844,
335
+ "loss": 0.3577,
336
+ "rewards/accuracies": 0.762499988079071,
337
+ "rewards/chosen": 1.482812523841858,
338
+ "rewards/margins": 1.923437476158142,
339
+ "rewards/rejected": -0.4388671815395355,
340
+ "step": 210
341
+ },
342
+ {
343
+ "epoch": 0.40145985401459855,
344
+ "grad_norm": 105.65792625209929,
345
+ "learning_rate": 3.3367139959432044e-07,
346
+ "logits/chosen": -0.09575805813074112,
347
+ "logits/rejected": -0.14519043266773224,
348
+ "logps/chosen": -443.20001220703125,
349
+ "logps/rejected": -427.79998779296875,
350
+ "loss": 0.4191,
351
+ "rewards/accuracies": 0.75,
352
+ "rewards/chosen": 1.326562523841858,
353
+ "rewards/margins": 1.966796875,
354
+ "rewards/rejected": -0.6392577886581421,
355
+ "step": 220
356
+ },
357
+ {
358
+ "epoch": 0.4197080291970803,
359
+ "grad_norm": 109.72645289364215,
360
+ "learning_rate": 3.2352941176470586e-07,
361
+ "logits/chosen": 0.01968994177877903,
362
+ "logits/rejected": -0.03289794921875,
363
+ "logps/chosen": -485.6000061035156,
364
+ "logps/rejected": -453.20001220703125,
365
+ "loss": 0.4353,
366
+ "rewards/accuracies": 0.75,
367
+ "rewards/chosen": 1.896875023841858,
368
+ "rewards/margins": 1.94921875,
369
+ "rewards/rejected": -0.05209960788488388,
370
+ "step": 230
371
+ },
372
+ {
373
+ "epoch": 0.43795620437956206,
374
+ "grad_norm": 54.27538060537205,
375
+ "learning_rate": 3.133874239350913e-07,
376
+ "logits/chosen": -0.21235351264476776,
377
+ "logits/rejected": -0.23594971001148224,
378
+ "logps/chosen": -502.0,
379
+ "logps/rejected": -472.20001220703125,
380
+ "loss": 0.2759,
381
+ "rewards/accuracies": 0.8125,
382
+ "rewards/chosen": 1.908203125,
383
+ "rewards/margins": 2.317187547683716,
384
+ "rewards/rejected": -0.40947264432907104,
385
+ "step": 240
386
+ },
387
+ {
388
+ "epoch": 0.4562043795620438,
389
+ "grad_norm": 209.29865250933202,
390
+ "learning_rate": 3.0324543610547665e-07,
391
+ "logits/chosen": 0.01799316331744194,
392
+ "logits/rejected": 0.07851867377758026,
393
+ "logps/chosen": -444.6000061035156,
394
+ "logps/rejected": -399.6000061035156,
395
+ "loss": 0.4111,
396
+ "rewards/accuracies": 0.737500011920929,
397
+ "rewards/chosen": 2.125,
398
+ "rewards/margins": 2.1265625953674316,
399
+ "rewards/rejected": -0.0016113281017169356,
400
+ "step": 250
401
+ },
402
+ {
403
+ "epoch": 0.4744525547445255,
404
+ "grad_norm": 72.97301814642577,
405
+ "learning_rate": 2.93103448275862e-07,
406
+ "logits/chosen": 0.03842773288488388,
407
+ "logits/rejected": 0.01112976111471653,
408
+ "logps/chosen": -445.0,
409
+ "logps/rejected": -411.0,
410
+ "loss": 0.4229,
411
+ "rewards/accuracies": 0.75,
412
+ "rewards/chosen": 1.3894531726837158,
413
+ "rewards/margins": 1.676855444908142,
414
+ "rewards/rejected": -0.28840333223342896,
415
+ "step": 260
416
+ },
417
+ {
418
+ "epoch": 0.4927007299270073,
419
+ "grad_norm": 100.52100065549308,
420
+ "learning_rate": 2.829614604462475e-07,
421
+ "logits/chosen": 0.04062499850988388,
422
+ "logits/rejected": -0.05421142652630806,
423
+ "logps/chosen": -457.3999938964844,
424
+ "logps/rejected": -447.79998779296875,
425
+ "loss": 0.5097,
426
+ "rewards/accuracies": 0.699999988079071,
427
+ "rewards/chosen": 1.5515625476837158,
428
+ "rewards/margins": 1.6711914539337158,
429
+ "rewards/rejected": -0.1171875,
430
+ "step": 270
431
+ },
432
+ {
433
+ "epoch": 0.5109489051094891,
434
+ "grad_norm": 71.42885032223506,
435
+ "learning_rate": 2.7281947261663286e-07,
436
+ "logits/chosen": -0.0455322265625,
437
+ "logits/rejected": -0.01320800743997097,
438
+ "logps/chosen": -512.2000122070312,
439
+ "logps/rejected": -464.3999938964844,
440
+ "loss": 0.4505,
441
+ "rewards/accuracies": 0.7250000238418579,
442
+ "rewards/chosen": 1.1550781726837158,
443
+ "rewards/margins": 1.8136718273162842,
444
+ "rewards/rejected": -0.6611328125,
445
+ "step": 280
446
+ },
447
+ {
448
+ "epoch": 0.5291970802919708,
449
+ "grad_norm": 72.23719994945806,
450
+ "learning_rate": 2.6267748478701823e-07,
451
+ "logits/chosen": -0.14443358778953552,
452
+ "logits/rejected": -0.14687499403953552,
453
+ "logps/chosen": -442.79998779296875,
454
+ "logps/rejected": -440.79998779296875,
455
+ "loss": 0.3643,
456
+ "rewards/accuracies": 0.75,
457
+ "rewards/chosen": 1.404394507408142,
458
+ "rewards/margins": 2.530468702316284,
459
+ "rewards/rejected": -1.126562476158142,
460
+ "step": 290
461
+ },
462
+ {
463
+ "epoch": 0.5474452554744526,
464
+ "grad_norm": 109.10421493067516,
465
+ "learning_rate": 2.525354969574036e-07,
466
+ "logits/chosen": 0.01424560509622097,
467
+ "logits/rejected": 0.12192382663488388,
468
+ "logps/chosen": -592.4000244140625,
469
+ "logps/rejected": -598.0,
470
+ "loss": 0.3889,
471
+ "rewards/accuracies": 0.762499988079071,
472
+ "rewards/chosen": 0.956250011920929,
473
+ "rewards/margins": 2.1015625,
474
+ "rewards/rejected": -1.142822265625,
475
+ "step": 300
476
+ },
477
+ {
478
+ "epoch": 0.5656934306569343,
479
+ "grad_norm": 86.4722981606142,
480
+ "learning_rate": 2.42393509127789e-07,
481
+ "logits/chosen": -0.06550292670726776,
482
+ "logits/rejected": -0.04240722581744194,
483
+ "logps/chosen": -473.20001220703125,
484
+ "logps/rejected": -456.3999938964844,
485
+ "loss": 0.4345,
486
+ "rewards/accuracies": 0.699999988079071,
487
+ "rewards/chosen": 0.6993774175643921,
488
+ "rewards/margins": 1.698828101158142,
489
+ "rewards/rejected": -0.9986327886581421,
490
+ "step": 310
491
+ },
492
+ {
493
+ "epoch": 0.583941605839416,
494
+ "grad_norm": 57.2804545162538,
495
+ "learning_rate": 2.3225152129817443e-07,
496
+ "logits/chosen": 0.05268554762005806,
497
+ "logits/rejected": 0.06523437798023224,
498
+ "logps/chosen": -429.20001220703125,
499
+ "logps/rejected": -381.3999938964844,
500
+ "loss": 0.3993,
501
+ "rewards/accuracies": 0.7250000238418579,
502
+ "rewards/chosen": 0.7642577886581421,
503
+ "rewards/margins": 1.9884765148162842,
504
+ "rewards/rejected": -1.222021460533142,
505
+ "step": 320
506
+ },
507
+ {
508
+ "epoch": 0.6021897810218978,
509
+ "grad_norm": 170.96405372232695,
510
+ "learning_rate": 2.2210953346855983e-07,
511
+ "logits/chosen": -0.09375,
512
+ "logits/rejected": -0.18121948838233948,
513
+ "logps/chosen": -411.20001220703125,
514
+ "logps/rejected": -421.20001220703125,
515
+ "loss": 0.3965,
516
+ "rewards/accuracies": 0.7749999761581421,
517
+ "rewards/chosen": 0.908007800579071,
518
+ "rewards/margins": 1.976171851158142,
519
+ "rewards/rejected": -1.068359375,
520
+ "step": 330
521
+ },
522
+ {
523
+ "epoch": 0.6204379562043796,
524
+ "grad_norm": 93.61816587541509,
525
+ "learning_rate": 2.1196754563894522e-07,
526
+ "logits/chosen": -0.10378418117761612,
527
+ "logits/rejected": -0.03239746019244194,
528
+ "logps/chosen": -440.3999938964844,
529
+ "logps/rejected": -413.79998779296875,
530
+ "loss": 0.5115,
531
+ "rewards/accuracies": 0.675000011920929,
532
+ "rewards/chosen": 0.719970703125,
533
+ "rewards/margins": 1.680078148841858,
534
+ "rewards/rejected": -0.9598633050918579,
535
+ "step": 340
536
+ },
537
+ {
538
+ "epoch": 0.6386861313868614,
539
+ "grad_norm": 92.84152158463883,
540
+ "learning_rate": 2.0182555780933062e-07,
541
+ "logits/chosen": -0.08485107123851776,
542
+ "logits/rejected": -0.09698486328125,
543
+ "logps/chosen": -468.3999938964844,
544
+ "logps/rejected": -484.0,
545
+ "loss": 0.4151,
546
+ "rewards/accuracies": 0.7875000238418579,
547
+ "rewards/chosen": 0.4109863340854645,
548
+ "rewards/margins": 2.1148438453674316,
549
+ "rewards/rejected": -1.707421898841858,
550
+ "step": 350
551
+ },
552
+ {
553
+ "epoch": 0.656934306569343,
554
+ "grad_norm": 116.66381358621938,
555
+ "learning_rate": 1.91683569979716e-07,
556
+ "logits/chosen": -0.047119140625,
557
+ "logits/rejected": -0.0908203125,
558
+ "logps/chosen": -523.4000244140625,
559
+ "logps/rejected": -520.4000244140625,
560
+ "loss": 0.4036,
561
+ "rewards/accuracies": 0.699999988079071,
562
+ "rewards/chosen": 0.7984374761581421,
563
+ "rewards/margins": 1.9406249523162842,
564
+ "rewards/rejected": -1.1416015625,
565
+ "step": 360
566
+ },
567
+ {
568
+ "epoch": 0.6751824817518248,
569
+ "grad_norm": 66.21210834363939,
570
+ "learning_rate": 1.815415821501014e-07,
571
+ "logits/chosen": 0.01052246056497097,
572
+ "logits/rejected": 0.00347900390625,
573
+ "logps/chosen": -443.3999938964844,
574
+ "logps/rejected": -418.6000061035156,
575
+ "loss": 0.4784,
576
+ "rewards/accuracies": 0.7124999761581421,
577
+ "rewards/chosen": 0.4449218809604645,
578
+ "rewards/margins": 1.796484351158142,
579
+ "rewards/rejected": -1.3522460460662842,
580
+ "step": 370
581
+ },
582
+ {
583
+ "epoch": 0.6934306569343066,
584
+ "grad_norm": 96.94205645326319,
585
+ "learning_rate": 1.7139959432048682e-07,
586
+ "logits/chosen": -0.06866760551929474,
587
+ "logits/rejected": -0.07124023139476776,
588
+ "logps/chosen": -450.6000061035156,
589
+ "logps/rejected": -419.5,
590
+ "loss": 0.4503,
591
+ "rewards/accuracies": 0.675000011920929,
592
+ "rewards/chosen": 0.5906738042831421,
593
+ "rewards/margins": 1.701171875,
594
+ "rewards/rejected": -1.1095702648162842,
595
+ "step": 380
596
+ },
597
+ {
598
+ "epoch": 0.7116788321167883,
599
+ "grad_norm": 170.19556173050714,
600
+ "learning_rate": 1.612576064908722e-07,
601
+ "logits/chosen": -0.02810058556497097,
602
+ "logits/rejected": 0.04189453274011612,
603
+ "logps/chosen": -413.6000061035156,
604
+ "logps/rejected": -385.79998779296875,
605
+ "loss": 0.383,
606
+ "rewards/accuracies": 0.762499988079071,
607
+ "rewards/chosen": 0.6146484613418579,
608
+ "rewards/margins": 2.09375,
609
+ "rewards/rejected": -1.4822266101837158,
610
+ "step": 390
611
+ },
612
+ {
613
+ "epoch": 0.7299270072992701,
614
+ "grad_norm": 200.81203370210167,
615
+ "learning_rate": 1.511156186612576e-07,
616
+ "logits/chosen": 0.02833252027630806,
617
+ "logits/rejected": -0.02805175818502903,
618
+ "logps/chosen": -447.0,
619
+ "logps/rejected": -401.20001220703125,
620
+ "loss": 0.4363,
621
+ "rewards/accuracies": 0.75,
622
+ "rewards/chosen": 1.0343506336212158,
623
+ "rewards/margins": 2.0367188453674316,
624
+ "rewards/rejected": -1.0,
625
+ "step": 400
626
+ },
627
+ {
628
+ "epoch": 0.7481751824817519,
629
+ "grad_norm": 128.18451740094875,
630
+ "learning_rate": 1.4097363083164298e-07,
631
+ "logits/chosen": -0.083251953125,
632
+ "logits/rejected": -0.05070800706744194,
633
+ "logps/chosen": -457.0,
634
+ "logps/rejected": -417.79998779296875,
635
+ "loss": 0.4099,
636
+ "rewards/accuracies": 0.824999988079071,
637
+ "rewards/chosen": 1.0426757335662842,
638
+ "rewards/margins": 2.3359375,
639
+ "rewards/rejected": -1.2976562976837158,
640
+ "step": 410
641
+ },
642
+ {
643
+ "epoch": 0.7664233576642335,
644
+ "grad_norm": 122.2923701591513,
645
+ "learning_rate": 1.308316430020284e-07,
646
+ "logits/chosen": 0.02608642540872097,
647
+ "logits/rejected": -0.01593627966940403,
648
+ "logps/chosen": -380.6000061035156,
649
+ "logps/rejected": -373.79998779296875,
650
+ "loss": 0.4059,
651
+ "rewards/accuracies": 0.75,
652
+ "rewards/chosen": 0.92529296875,
653
+ "rewards/margins": 2.4878907203674316,
654
+ "rewards/rejected": -1.5636718273162842,
655
+ "step": 420
656
+ },
657
+ {
658
+ "epoch": 0.7846715328467153,
659
+ "grad_norm": 171.12346779236017,
660
+ "learning_rate": 1.206896551724138e-07,
661
+ "logits/chosen": 0.24042968451976776,
662
+ "logits/rejected": 0.085296630859375,
663
+ "logps/chosen": -383.6000061035156,
664
+ "logps/rejected": -373.79998779296875,
665
+ "loss": 0.4154,
666
+ "rewards/accuracies": 0.7749999761581421,
667
+ "rewards/chosen": 0.9688720703125,
668
+ "rewards/margins": 2.010937452316284,
669
+ "rewards/rejected": -1.0431640148162842,
670
+ "step": 430
671
+ },
672
+ {
673
+ "epoch": 0.8029197080291971,
674
+ "grad_norm": 90.24483614578641,
675
+ "learning_rate": 1.1054766734279918e-07,
676
+ "logits/chosen": -0.05828857421875,
677
+ "logits/rejected": -0.06459961086511612,
678
+ "logps/chosen": -411.20001220703125,
679
+ "logps/rejected": -397.0,
680
+ "loss": 0.4134,
681
+ "rewards/accuracies": 0.7124999761581421,
682
+ "rewards/chosen": 1.1129882335662842,
683
+ "rewards/margins": 1.866796851158142,
684
+ "rewards/rejected": -0.749707043170929,
685
+ "step": 440
686
+ },
687
+ {
688
+ "epoch": 0.8211678832116789,
689
+ "grad_norm": 26.93997549104036,
690
+ "learning_rate": 1.0040567951318458e-07,
691
+ "logits/chosen": -0.16145019233226776,
692
+ "logits/rejected": -0.169921875,
693
+ "logps/chosen": -453.20001220703125,
694
+ "logps/rejected": -431.0,
695
+ "loss": 0.2786,
696
+ "rewards/accuracies": 0.824999988079071,
697
+ "rewards/chosen": 1.112890601158142,
698
+ "rewards/margins": 2.4312500953674316,
699
+ "rewards/rejected": -1.3162109851837158,
700
+ "step": 450
701
+ },
702
+ {
703
+ "epoch": 0.8394160583941606,
704
+ "grad_norm": 59.45894612144818,
705
+ "learning_rate": 9.026369168356999e-08,
706
+ "logits/chosen": 0.0780029296875,
707
+ "logits/rejected": 0.05783691257238388,
708
+ "logps/chosen": -441.0,
709
+ "logps/rejected": -403.3999938964844,
710
+ "loss": 0.3064,
711
+ "rewards/accuracies": 0.7749999761581421,
712
+ "rewards/chosen": 1.163671851158142,
713
+ "rewards/margins": 2.453125,
714
+ "rewards/rejected": -1.2890625,
715
+ "step": 460
716
+ },
717
+ {
718
+ "epoch": 0.8576642335766423,
719
+ "grad_norm": 80.72693168394458,
720
+ "learning_rate": 8.012170385395538e-08,
721
+ "logits/chosen": 0.06926269829273224,
722
+ "logits/rejected": -0.0065063475631177425,
723
+ "logps/chosen": -476.6000061035156,
724
+ "logps/rejected": -449.6000061035156,
725
+ "loss": 0.5556,
726
+ "rewards/accuracies": 0.7250000238418579,
727
+ "rewards/chosen": 0.7232666015625,
728
+ "rewards/margins": 1.98828125,
729
+ "rewards/rejected": -1.266259789466858,
730
+ "step": 470
731
+ },
732
+ {
733
+ "epoch": 0.8759124087591241,
734
+ "grad_norm": 28.20404376922917,
735
+ "learning_rate": 6.997971602434077e-08,
736
+ "logits/chosen": -0.02747192420065403,
737
+ "logits/rejected": 0.05877685546875,
738
+ "logps/chosen": -389.0,
739
+ "logps/rejected": -377.79998779296875,
740
+ "loss": 0.3302,
741
+ "rewards/accuracies": 0.8125,
742
+ "rewards/chosen": 1.2389647960662842,
743
+ "rewards/margins": 2.2281250953674316,
744
+ "rewards/rejected": -0.9869140386581421,
745
+ "step": 480
746
+ },
747
+ {
748
+ "epoch": 0.8941605839416058,
749
+ "grad_norm": 70.22161951421818,
750
+ "learning_rate": 5.983772819472617e-08,
751
+ "logits/chosen": -0.07192382961511612,
752
+ "logits/rejected": -0.06147461012005806,
753
+ "logps/chosen": -445.79998779296875,
754
+ "logps/rejected": -437.6000061035156,
755
+ "loss": 0.4594,
756
+ "rewards/accuracies": 0.7250000238418579,
757
+ "rewards/chosen": 1.417871117591858,
758
+ "rewards/margins": 1.9235351085662842,
759
+ "rewards/rejected": -0.505908191204071,
760
+ "step": 490
761
+ },
762
+ {
763
+ "epoch": 0.9124087591240876,
764
+ "grad_norm": 153.0002143782165,
765
+ "learning_rate": 4.969574036511156e-08,
766
+ "logits/chosen": 0.06987304985523224,
767
+ "logits/rejected": 0.007641601376235485,
768
+ "logps/chosen": -420.3999938964844,
769
+ "logps/rejected": -338.79998779296875,
770
+ "loss": 0.3153,
771
+ "rewards/accuracies": 0.824999988079071,
772
+ "rewards/chosen": 1.2451171875,
773
+ "rewards/margins": 2.368359327316284,
774
+ "rewards/rejected": -1.123925805091858,
775
+ "step": 500
776
+ },
777
+ {
778
+ "epoch": 0.9306569343065694,
779
+ "grad_norm": 291.65840516029397,
780
+ "learning_rate": 3.9553752535496954e-08,
781
+ "logits/chosen": -0.06279297173023224,
782
+ "logits/rejected": -0.05703125149011612,
783
+ "logps/chosen": -430.6000061035156,
784
+ "logps/rejected": -369.0,
785
+ "loss": 0.3813,
786
+ "rewards/accuracies": 0.7749999761581421,
787
+ "rewards/chosen": 1.338476538658142,
788
+ "rewards/margins": 2.424999952316284,
789
+ "rewards/rejected": -1.08837890625,
790
+ "step": 510
791
+ },
792
+ {
793
+ "epoch": 0.948905109489051,
794
+ "grad_norm": 79.85392566108807,
795
+ "learning_rate": 2.941176470588235e-08,
796
+ "logits/chosen": -0.18828125298023224,
797
+ "logits/rejected": -0.16739502549171448,
798
+ "logps/chosen": -429.3999938964844,
799
+ "logps/rejected": -395.0,
800
+ "loss": 0.315,
801
+ "rewards/accuracies": 0.800000011920929,
802
+ "rewards/chosen": 1.3271484375,
803
+ "rewards/margins": 2.3125,
804
+ "rewards/rejected": -0.988525390625,
805
+ "step": 520
806
+ },
807
+ {
808
+ "epoch": 0.9671532846715328,
809
+ "grad_norm": 139.5351558966506,
810
+ "learning_rate": 1.9269776876267748e-08,
811
+ "logits/chosen": -0.09885253757238388,
812
+ "logits/rejected": -0.02666015550494194,
813
+ "logps/chosen": -443.3999938964844,
814
+ "logps/rejected": -425.6000061035156,
815
+ "loss": 0.3221,
816
+ "rewards/accuracies": 0.7749999761581421,
817
+ "rewards/chosen": 1.400390625,
818
+ "rewards/margins": 2.6953125,
819
+ "rewards/rejected": -1.2951171398162842,
820
+ "step": 530
821
+ },
822
+ {
823
+ "epoch": 0.9854014598540146,
824
+ "grad_norm": 23.962818117622025,
825
+ "learning_rate": 9.127789046653143e-09,
826
+ "logits/chosen": 0.04451904445886612,
827
+ "logits/rejected": 0.0567626953125,
828
+ "logps/chosen": -394.0,
829
+ "logps/rejected": -396.6000061035156,
830
+ "loss": 0.3834,
831
+ "rewards/accuracies": 0.862500011920929,
832
+ "rewards/chosen": 0.765002429485321,
833
+ "rewards/margins": 1.690332055091858,
834
+ "rewards/rejected": -0.9234374761581421,
835
+ "step": 540
836
+ },
837
+ {
838
+ "epoch": 1.0,
839
+ "eval_logits/chosen": -0.07358022779226303,
840
+ "eval_logits/rejected": -0.09998497366905212,
841
+ "eval_logps/chosen": -466.1538391113281,
842
+ "eval_logps/rejected": -437.0,
843
+ "eval_loss": 0.392181396484375,
844
+ "eval_rewards/accuracies": 0.7403846383094788,
845
+ "eval_rewards/chosen": 0.7243840098381042,
846
+ "eval_rewards/margins": 2.152644157409668,
847
+ "eval_rewards/rejected": -1.426832914352417,
848
+ "eval_runtime": 8.2786,
849
+ "eval_samples_per_second": 12.079,
850
+ "eval_steps_per_second": 1.57,
851
+ "step": 548
852
+ }
853
+ ],
854
+ "logging_steps": 10,
855
+ "max_steps": 548,
856
+ "num_input_tokens_seen": 0,
857
+ "num_train_epochs": 1,
858
+ "save_steps": 500,
859
+ "stateful_callbacks": {
860
+ "TrainerControl": {
861
+ "args": {
862
+ "should_epoch_stop": false,
863
+ "should_evaluate": false,
864
+ "should_log": false,
865
+ "should_save": true,
866
+ "should_training_stop": true
867
+ },
868
+ "attributes": {}
869
+ }
870
+ },
871
+ "total_flos": 0.0,
872
+ "train_batch_size": 2,
873
+ "trial_name": null,
874
+ "trial_params": null
875
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccc6d6d6ccc6a292c50503464ca786831eb0e733dd5749ac08f3274417aa7436
3
+ size 8401
last-checkpoint/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)