Training in progress, epoch 1, checkpoint
Browse files- .gitattributes +1 -0
- last-checkpoint/added_tokens.json +24 -0
- last-checkpoint/chat_template.jinja +54 -0
- last-checkpoint/config.json +58 -0
- last-checkpoint/generation_config.json +14 -0
- last-checkpoint/global_step548/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step548/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step548/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step548/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step548/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/global_step548/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/global_step548/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/global_step548/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/latest +1 -0
- last-checkpoint/merges.txt +0 -0
- last-checkpoint/model-00001-of-00004.safetensors +3 -0
- last-checkpoint/model-00002-of-00004.safetensors +3 -0
- last-checkpoint/model-00003-of-00004.safetensors +3 -0
- last-checkpoint/model-00004-of-00004.safetensors +3 -0
- last-checkpoint/model.safetensors.index.json +347 -0
- last-checkpoint/rng_state_0.pth +3 -0
- last-checkpoint/rng_state_1.pth +3 -0
- last-checkpoint/rng_state_2.pth +3 -0
- last-checkpoint/rng_state_3.pth +3 -0
- last-checkpoint/scheduler.pt +3 -0
- last-checkpoint/special_tokens_map.json +31 -0
- last-checkpoint/tokenizer.json +3 -0
- last-checkpoint/tokenizer_config.json +207 -0
- last-checkpoint/trainer_state.json +875 -0
- last-checkpoint/training_args.bin +3 -0
- last-checkpoint/vocab.json +0 -0
- last-checkpoint/zero_to_fp32.py +760 -0
.gitattributes
CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
last-checkpoint/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
last-checkpoint/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
last-checkpoint/chat_template.jinja
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0]['role'] == 'system' %}
|
4 |
+
{{- messages[0]['content'] }}
|
5 |
+
{%- else %}
|
6 |
+
{{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
|
7 |
+
{%- endif %}
|
8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
9 |
+
{%- for tool in tools %}
|
10 |
+
{{- "\n" }}
|
11 |
+
{{- tool | tojson }}
|
12 |
+
{%- endfor %}
|
13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
14 |
+
{%- else %}
|
15 |
+
{%- if messages[0]['role'] == 'system' %}
|
16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
17 |
+
{%- else %}
|
18 |
+
{{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
|
19 |
+
{%- endif %}
|
20 |
+
{%- endif %}
|
21 |
+
{%- for message in messages %}
|
22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
24 |
+
{%- elif message.role == "assistant" %}
|
25 |
+
{{- '<|im_start|>' + message.role }}
|
26 |
+
{%- if message.content %}
|
27 |
+
{{- '\n' + message.content }}
|
28 |
+
{%- endif %}
|
29 |
+
{%- for tool_call in message.tool_calls %}
|
30 |
+
{%- if tool_call.function is defined %}
|
31 |
+
{%- set tool_call = tool_call.function %}
|
32 |
+
{%- endif %}
|
33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
34 |
+
{{- tool_call.name }}
|
35 |
+
{{- '", "arguments": ' }}
|
36 |
+
{{- tool_call.arguments | tojson }}
|
37 |
+
{{- '}\n</tool_call>' }}
|
38 |
+
{%- endfor %}
|
39 |
+
{{- '<|im_end|>\n' }}
|
40 |
+
{%- elif message.role == "tool" %}
|
41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
42 |
+
{{- '<|im_start|>user' }}
|
43 |
+
{%- endif %}
|
44 |
+
{{- '\n<tool_response>\n' }}
|
45 |
+
{{- message.content }}
|
46 |
+
{{- '\n</tool_response>' }}
|
47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
48 |
+
{{- '<|im_end|>\n' }}
|
49 |
+
{%- endif %}
|
50 |
+
{%- endif %}
|
51 |
+
{%- endfor %}
|
52 |
+
{%- if add_generation_prompt %}
|
53 |
+
{{- '<|im_start|>assistant\n' }}
|
54 |
+
{%- endif %}
|
last-checkpoint/config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 3584,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 18944,
|
12 |
+
"layer_types": [
|
13 |
+
"full_attention",
|
14 |
+
"full_attention",
|
15 |
+
"full_attention",
|
16 |
+
"full_attention",
|
17 |
+
"full_attention",
|
18 |
+
"full_attention",
|
19 |
+
"full_attention",
|
20 |
+
"full_attention",
|
21 |
+
"full_attention",
|
22 |
+
"full_attention",
|
23 |
+
"full_attention",
|
24 |
+
"full_attention",
|
25 |
+
"full_attention",
|
26 |
+
"full_attention",
|
27 |
+
"full_attention",
|
28 |
+
"full_attention",
|
29 |
+
"full_attention",
|
30 |
+
"full_attention",
|
31 |
+
"full_attention",
|
32 |
+
"full_attention",
|
33 |
+
"full_attention",
|
34 |
+
"full_attention",
|
35 |
+
"full_attention",
|
36 |
+
"full_attention",
|
37 |
+
"full_attention",
|
38 |
+
"full_attention",
|
39 |
+
"full_attention",
|
40 |
+
"full_attention"
|
41 |
+
],
|
42 |
+
"max_position_embeddings": 32768,
|
43 |
+
"max_window_layers": 28,
|
44 |
+
"model_type": "qwen2",
|
45 |
+
"num_attention_heads": 28,
|
46 |
+
"num_hidden_layers": 28,
|
47 |
+
"num_key_value_heads": 4,
|
48 |
+
"rms_norm_eps": 1e-06,
|
49 |
+
"rope_scaling": null,
|
50 |
+
"rope_theta": 1000000.0,
|
51 |
+
"sliding_window": null,
|
52 |
+
"tie_word_embeddings": false,
|
53 |
+
"torch_dtype": "bfloat16",
|
54 |
+
"transformers_version": "4.53.3",
|
55 |
+
"use_cache": false,
|
56 |
+
"use_sliding_window": false,
|
57 |
+
"vocab_size": 152064
|
58 |
+
}
|
last-checkpoint/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.53.3"
|
14 |
+
}
|
last-checkpoint/global_step548/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bea983d7491688a0552b3da916b5a27fdded4c049f300653e4613b5fc6e45cd6
|
3 |
+
size 15231238785
|
last-checkpoint/global_step548/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84ff4803e050b2baa600256daeaed70209b10da80cfeac246152bda1640cbed0
|
3 |
+
size 15231238785
|
last-checkpoint/global_step548/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b825f7ca7c788b5126430d26960ae7f530ee86bcf34e92df9b97d4a74e25c12
|
3 |
+
size 15231238785
|
last-checkpoint/global_step548/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcad61a5ceb64ff1a0126c2f0e35219b7a6cf269167387a5dc839e246b417927
|
3 |
+
size 15231238785
|
last-checkpoint/global_step548/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfd2d47fdc7c492c9b3839800aad7cbc32a34b316cad7d49eceae3529f84d20d
|
3 |
+
size 166752
|
last-checkpoint/global_step548/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b674de1a790cd800fe11bd9a09d5109af8b3cf0286f823f85f71bf007290ddac
|
3 |
+
size 166752
|
last-checkpoint/global_step548/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb0733dd6c787de73648ca4373e8e7b552f88b77f685f7fad97d68cfbe2d700b
|
3 |
+
size 166752
|
last-checkpoint/global_step548/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14b580a4016c7215787acfa0d4a199d32c40c7309a90b7428b87b425c0caf898
|
3 |
+
size 166752
|
last-checkpoint/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step548
|
last-checkpoint/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
last-checkpoint/model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80521f6c900143697281d4600e67ab315c8b71bceacee150223128239ef99971
|
3 |
+
size 4877660776
|
last-checkpoint/model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d128d9387aa00a908f5968a815f0cef17c472e7d1e80e69541de184041a20f31
|
3 |
+
size 4932751008
|
last-checkpoint/model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dd6ca393d0c46fcf5d9d2480065f288ab16af2e24809caaffb4d02dec32aa4c
|
3 |
+
size 4330865200
|
last-checkpoint/model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6044a4ba978cea9f0c0999cc35796dd6b3ddb394eaf324bd9a97964684038828
|
3 |
+
size 1089994880
|
last-checkpoint/model.safetensors.index.json
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_parameters": 333312,
|
4 |
+
"total_size": 15231233024
|
5 |
+
},
|
6 |
+
"weight_map": {
|
7 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
8 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
33 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
141 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
165 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
261 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
321 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
333 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
344 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
345 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
346 |
+
}
|
347 |
+
}
|
last-checkpoint/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fe6b873f1da64bb980afe982fc1c6b6bc461ad8c33073d856804323f64b26d9
|
3 |
+
size 15429
|
last-checkpoint/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13db4dd10b22b5464f5ef0b539152b46390eae6a827b355108cb54b1af2eb830
|
3 |
+
size 15429
|
last-checkpoint/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06e293f13fb6e873e8081636b6b07115410b397c55f1ed08b8772b059c8eb74e
|
3 |
+
size 15429
|
last-checkpoint/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c595c077664f94b7f91088561951be20e39483e01865774a83bc46f3971a3152
|
3 |
+
size 15429
|
last-checkpoint/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91f5b063c2f54dad51b7840e2f9b7461a9e5e558bbc9181e07f8ad10df71ba3e
|
3 |
+
size 1465
|
last-checkpoint/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
last-checkpoint/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
last-checkpoint/tokenizer_config.json
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"clean_up_tokenization_spaces": false,
|
199 |
+
"eos_token": "<|im_end|>",
|
200 |
+
"errors": "replace",
|
201 |
+
"extra_special_tokens": {},
|
202 |
+
"model_max_length": 2048,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"split_special_tokens": false,
|
205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
206 |
+
"unk_token": null
|
207 |
+
}
|
last-checkpoint/trainer_state.json
ADDED
@@ -0,0 +1,875 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 1.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 548,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.0018248175182481751,
|
14 |
+
"grad_norm": 183.4268798763667,
|
15 |
+
"learning_rate": 0.0,
|
16 |
+
"logits/chosen": -0.486328125,
|
17 |
+
"logits/rejected": -0.65234375,
|
18 |
+
"logps/chosen": -1016.0,
|
19 |
+
"logps/rejected": -908.0,
|
20 |
+
"loss": 0.6914,
|
21 |
+
"rewards/accuracies": 0.0,
|
22 |
+
"rewards/chosen": 0.0,
|
23 |
+
"rewards/margins": 0.0,
|
24 |
+
"rewards/rejected": 0.0,
|
25 |
+
"step": 1
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 0.01824817518248175,
|
29 |
+
"grad_norm": 190.79059532204576,
|
30 |
+
"learning_rate": 8.181818181818182e-08,
|
31 |
+
"logits/chosen": -0.9583333134651184,
|
32 |
+
"logits/rejected": -0.8624131679534912,
|
33 |
+
"logps/chosen": -399.3333435058594,
|
34 |
+
"logps/rejected": -353.1111145019531,
|
35 |
+
"loss": 0.7228,
|
36 |
+
"rewards/accuracies": 0.1805555522441864,
|
37 |
+
"rewards/chosen": -0.01952446810901165,
|
38 |
+
"rewards/margins": -0.0528903529047966,
|
39 |
+
"rewards/rejected": 0.0333658866584301,
|
40 |
+
"step": 10
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"epoch": 0.0364963503649635,
|
44 |
+
"grad_norm": 200.0933911782489,
|
45 |
+
"learning_rate": 1.7272727272727272e-07,
|
46 |
+
"logits/chosen": -0.7900390625,
|
47 |
+
"logits/rejected": -0.792773425579071,
|
48 |
+
"logps/chosen": -512.0,
|
49 |
+
"logps/rejected": -455.79998779296875,
|
50 |
+
"loss": 0.6865,
|
51 |
+
"rewards/accuracies": 0.3499999940395355,
|
52 |
+
"rewards/chosen": 0.09881591796875,
|
53 |
+
"rewards/margins": 0.02115478552877903,
|
54 |
+
"rewards/rejected": 0.07758178561925888,
|
55 |
+
"step": 20
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.05474452554744526,
|
59 |
+
"grad_norm": 137.2607562201183,
|
60 |
+
"learning_rate": 2.636363636363636e-07,
|
61 |
+
"logits/chosen": -0.839160144329071,
|
62 |
+
"logits/rejected": -0.898242175579071,
|
63 |
+
"logps/chosen": -380.6000061035156,
|
64 |
+
"logps/rejected": -331.3999938964844,
|
65 |
+
"loss": 0.6383,
|
66 |
+
"rewards/accuracies": 0.5625,
|
67 |
+
"rewards/chosen": 0.5669921636581421,
|
68 |
+
"rewards/margins": 0.1439208984375,
|
69 |
+
"rewards/rejected": 0.4232421815395355,
|
70 |
+
"step": 30
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"epoch": 0.072992700729927,
|
74 |
+
"grad_norm": 83.1602987250809,
|
75 |
+
"learning_rate": 3.545454545454545e-07,
|
76 |
+
"logits/chosen": -0.7520507574081421,
|
77 |
+
"logits/rejected": -0.891796886920929,
|
78 |
+
"logps/chosen": -440.3999938964844,
|
79 |
+
"logps/rejected": -381.79998779296875,
|
80 |
+
"loss": 0.5843,
|
81 |
+
"rewards/accuracies": 0.7124999761581421,
|
82 |
+
"rewards/chosen": 1.085546851158142,
|
83 |
+
"rewards/margins": 0.4743408262729645,
|
84 |
+
"rewards/rejected": 0.61279296875,
|
85 |
+
"step": 40
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 0.09124087591240876,
|
89 |
+
"grad_norm": 72.42686849970667,
|
90 |
+
"learning_rate": 4.4545454545454544e-07,
|
91 |
+
"logits/chosen": -0.5654296875,
|
92 |
+
"logits/rejected": -0.6791015863418579,
|
93 |
+
"logps/chosen": -484.0,
|
94 |
+
"logps/rejected": -410.6000061035156,
|
95 |
+
"loss": 0.5111,
|
96 |
+
"rewards/accuracies": 0.7124999761581421,
|
97 |
+
"rewards/chosen": 1.700781226158142,
|
98 |
+
"rewards/margins": 0.850634753704071,
|
99 |
+
"rewards/rejected": 0.850390613079071,
|
100 |
+
"step": 50
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.10948905109489052,
|
104 |
+
"grad_norm": 85.28805875692137,
|
105 |
+
"learning_rate": 4.959432048681541e-07,
|
106 |
+
"logits/chosen": -0.516406238079071,
|
107 |
+
"logits/rejected": -0.570239245891571,
|
108 |
+
"logps/chosen": -376.79998779296875,
|
109 |
+
"logps/rejected": -328.29998779296875,
|
110 |
+
"loss": 0.437,
|
111 |
+
"rewards/accuracies": 0.75,
|
112 |
+
"rewards/chosen": 1.7800781726837158,
|
113 |
+
"rewards/margins": 0.961376965045929,
|
114 |
+
"rewards/rejected": 0.818359375,
|
115 |
+
"step": 60
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.12773722627737227,
|
119 |
+
"grad_norm": 91.08005236458708,
|
120 |
+
"learning_rate": 4.858012170385395e-07,
|
121 |
+
"logits/chosen": -0.46367186307907104,
|
122 |
+
"logits/rejected": -0.4881347715854645,
|
123 |
+
"logps/chosen": -422.6000061035156,
|
124 |
+
"logps/rejected": -347.3999938964844,
|
125 |
+
"loss": 0.5437,
|
126 |
+
"rewards/accuracies": 0.675000011920929,
|
127 |
+
"rewards/chosen": 1.330078125,
|
128 |
+
"rewards/margins": 0.734570324420929,
|
129 |
+
"rewards/rejected": 0.595654308795929,
|
130 |
+
"step": 70
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.145985401459854,
|
134 |
+
"grad_norm": 96.85867903332033,
|
135 |
+
"learning_rate": 4.7565922920892493e-07,
|
136 |
+
"logits/chosen": -0.4019775390625,
|
137 |
+
"logits/rejected": -0.43791502714157104,
|
138 |
+
"logps/chosen": -455.3999938964844,
|
139 |
+
"logps/rejected": -468.0,
|
140 |
+
"loss": 0.5068,
|
141 |
+
"rewards/accuracies": 0.737500011920929,
|
142 |
+
"rewards/chosen": 1.2746093273162842,
|
143 |
+
"rewards/margins": 0.9996093511581421,
|
144 |
+
"rewards/rejected": 0.27705079317092896,
|
145 |
+
"step": 80
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.16423357664233576,
|
149 |
+
"grad_norm": 67.75491451556083,
|
150 |
+
"learning_rate": 4.655172413793103e-07,
|
151 |
+
"logits/chosen": -0.24169310927391052,
|
152 |
+
"logits/rejected": -0.29462891817092896,
|
153 |
+
"logps/chosen": -424.3999938964844,
|
154 |
+
"logps/rejected": -374.20001220703125,
|
155 |
+
"loss": 0.3807,
|
156 |
+
"rewards/accuracies": 0.800000011920929,
|
157 |
+
"rewards/chosen": 1.853124976158142,
|
158 |
+
"rewards/margins": 1.2941405773162842,
|
159 |
+
"rewards/rejected": 0.5595703125,
|
160 |
+
"step": 90
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"epoch": 0.18248175182481752,
|
164 |
+
"grad_norm": 93.30496706040954,
|
165 |
+
"learning_rate": 4.5537525354969567e-07,
|
166 |
+
"logits/chosen": -0.23894043266773224,
|
167 |
+
"logits/rejected": -0.25419920682907104,
|
168 |
+
"logps/chosen": -440.0,
|
169 |
+
"logps/rejected": -393.20001220703125,
|
170 |
+
"loss": 0.4229,
|
171 |
+
"rewards/accuracies": 0.699999988079071,
|
172 |
+
"rewards/chosen": 1.433203101158142,
|
173 |
+
"rewards/margins": 1.3212890625,
|
174 |
+
"rewards/rejected": 0.11308594048023224,
|
175 |
+
"step": 100
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.20072992700729927,
|
179 |
+
"grad_norm": 62.86660194925304,
|
180 |
+
"learning_rate": 4.4523326572008114e-07,
|
181 |
+
"logits/chosen": -0.14438477158546448,
|
182 |
+
"logits/rejected": -0.25579530000686646,
|
183 |
+
"logps/chosen": -409.20001220703125,
|
184 |
+
"logps/rejected": -377.3999938964844,
|
185 |
+
"loss": 0.3675,
|
186 |
+
"rewards/accuracies": 0.7749999761581421,
|
187 |
+
"rewards/chosen": 1.952734351158142,
|
188 |
+
"rewards/margins": 1.849218726158142,
|
189 |
+
"rewards/rejected": 0.10541991889476776,
|
190 |
+
"step": 110
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"epoch": 0.21897810218978103,
|
194 |
+
"grad_norm": 60.03776822417948,
|
195 |
+
"learning_rate": 4.350912778904665e-07,
|
196 |
+
"logits/chosen": -0.346923828125,
|
197 |
+
"logits/rejected": -0.3475585877895355,
|
198 |
+
"logps/chosen": -491.0,
|
199 |
+
"logps/rejected": -472.0,
|
200 |
+
"loss": 0.4935,
|
201 |
+
"rewards/accuracies": 0.699999988079071,
|
202 |
+
"rewards/chosen": 1.447265625,
|
203 |
+
"rewards/margins": 1.2218749523162842,
|
204 |
+
"rewards/rejected": 0.22526855766773224,
|
205 |
+
"step": 120
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.23722627737226276,
|
209 |
+
"grad_norm": 69.45442852616328,
|
210 |
+
"learning_rate": 4.249492900608519e-07,
|
211 |
+
"logits/chosen": -0.17467041313648224,
|
212 |
+
"logits/rejected": -0.20947265625,
|
213 |
+
"logps/chosen": -432.20001220703125,
|
214 |
+
"logps/rejected": -399.0,
|
215 |
+
"loss": 0.468,
|
216 |
+
"rewards/accuracies": 0.6875,
|
217 |
+
"rewards/chosen": 1.036718726158142,
|
218 |
+
"rewards/margins": 1.351953148841858,
|
219 |
+
"rewards/rejected": -0.313507080078125,
|
220 |
+
"step": 130
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.25547445255474455,
|
224 |
+
"grad_norm": 139.01818106445947,
|
225 |
+
"learning_rate": 4.148073022312373e-07,
|
226 |
+
"logits/chosen": -0.21988525986671448,
|
227 |
+
"logits/rejected": -0.26655274629592896,
|
228 |
+
"logps/chosen": -455.3999938964844,
|
229 |
+
"logps/rejected": -420.0,
|
230 |
+
"loss": 0.372,
|
231 |
+
"rewards/accuracies": 0.7749999761581421,
|
232 |
+
"rewards/chosen": 1.1648437976837158,
|
233 |
+
"rewards/margins": 1.658544898033142,
|
234 |
+
"rewards/rejected": -0.4948974549770355,
|
235 |
+
"step": 140
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 0.2737226277372263,
|
239 |
+
"grad_norm": 63.738656533900965,
|
240 |
+
"learning_rate": 4.046653144016227e-07,
|
241 |
+
"logits/chosen": -0.140167236328125,
|
242 |
+
"logits/rejected": -0.22265625,
|
243 |
+
"logps/chosen": -373.0,
|
244 |
+
"logps/rejected": -330.70001220703125,
|
245 |
+
"loss": 0.4044,
|
246 |
+
"rewards/accuracies": 0.7250000238418579,
|
247 |
+
"rewards/chosen": 1.3445312976837158,
|
248 |
+
"rewards/margins": 1.5832030773162842,
|
249 |
+
"rewards/rejected": -0.23894043266773224,
|
250 |
+
"step": 150
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"epoch": 0.291970802919708,
|
254 |
+
"grad_norm": 58.53887833297566,
|
255 |
+
"learning_rate": 3.945233265720081e-07,
|
256 |
+
"logits/chosen": -0.18510742485523224,
|
257 |
+
"logits/rejected": -0.107086181640625,
|
258 |
+
"logps/chosen": -485.6000061035156,
|
259 |
+
"logps/rejected": -449.0,
|
260 |
+
"loss": 0.5703,
|
261 |
+
"rewards/accuracies": 0.6875,
|
262 |
+
"rewards/chosen": 1.7589843273162842,
|
263 |
+
"rewards/margins": 1.361425757408142,
|
264 |
+
"rewards/rejected": 0.3995117247104645,
|
265 |
+
"step": 160
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"epoch": 0.3102189781021898,
|
269 |
+
"grad_norm": 91.87755966731375,
|
270 |
+
"learning_rate": 3.843813387423935e-07,
|
271 |
+
"logits/chosen": -0.23171386122703552,
|
272 |
+
"logits/rejected": -0.26677244901657104,
|
273 |
+
"logps/chosen": -465.20001220703125,
|
274 |
+
"logps/rejected": -475.20001220703125,
|
275 |
+
"loss": 0.4439,
|
276 |
+
"rewards/accuracies": 0.699999988079071,
|
277 |
+
"rewards/chosen": 1.56640625,
|
278 |
+
"rewards/margins": 1.7265625,
|
279 |
+
"rewards/rejected": -0.15704345703125,
|
280 |
+
"step": 170
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"epoch": 0.3284671532846715,
|
284 |
+
"grad_norm": 101.70063789740826,
|
285 |
+
"learning_rate": 3.7423935091277887e-07,
|
286 |
+
"logits/chosen": -0.06843261420726776,
|
287 |
+
"logits/rejected": -0.13564452528953552,
|
288 |
+
"logps/chosen": -502.20001220703125,
|
289 |
+
"logps/rejected": -482.0,
|
290 |
+
"loss": 0.3524,
|
291 |
+
"rewards/accuracies": 0.800000011920929,
|
292 |
+
"rewards/chosen": 1.283593773841858,
|
293 |
+
"rewards/margins": 1.9167969226837158,
|
294 |
+
"rewards/rejected": -0.63427734375,
|
295 |
+
"step": 180
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"epoch": 0.3467153284671533,
|
299 |
+
"grad_norm": 129.4709446137554,
|
300 |
+
"learning_rate": 3.640973630831643e-07,
|
301 |
+
"logits/chosen": -0.27153319120407104,
|
302 |
+
"logits/rejected": -0.21871337294578552,
|
303 |
+
"logps/chosen": -452.79998779296875,
|
304 |
+
"logps/rejected": -441.0,
|
305 |
+
"loss": 0.502,
|
306 |
+
"rewards/accuracies": 0.699999988079071,
|
307 |
+
"rewards/chosen": 1.521875023841858,
|
308 |
+
"rewards/margins": 1.573339819908142,
|
309 |
+
"rewards/rejected": -0.05205078050494194,
|
310 |
+
"step": 190
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.36496350364963503,
|
314 |
+
"grad_norm": 52.84176487442608,
|
315 |
+
"learning_rate": 3.5395537525354966e-07,
|
316 |
+
"logits/chosen": 0.02674560621380806,
|
317 |
+
"logits/rejected": -0.009631347842514515,
|
318 |
+
"logps/chosen": -454.20001220703125,
|
319 |
+
"logps/rejected": -382.20001220703125,
|
320 |
+
"loss": 0.4234,
|
321 |
+
"rewards/accuracies": 0.7749999761581421,
|
322 |
+
"rewards/chosen": 1.603906273841858,
|
323 |
+
"rewards/margins": 1.7890625,
|
324 |
+
"rewards/rejected": -0.18623046576976776,
|
325 |
+
"step": 200
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.38321167883211676,
|
329 |
+
"grad_norm": 64.84134129708892,
|
330 |
+
"learning_rate": 3.438133874239351e-07,
|
331 |
+
"logits/chosen": -0.18310546875,
|
332 |
+
"logits/rejected": -0.19301757216453552,
|
333 |
+
"logps/chosen": -411.79998779296875,
|
334 |
+
"logps/rejected": -366.3999938964844,
|
335 |
+
"loss": 0.3577,
|
336 |
+
"rewards/accuracies": 0.762499988079071,
|
337 |
+
"rewards/chosen": 1.482812523841858,
|
338 |
+
"rewards/margins": 1.923437476158142,
|
339 |
+
"rewards/rejected": -0.4388671815395355,
|
340 |
+
"step": 210
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 0.40145985401459855,
|
344 |
+
"grad_norm": 105.65792625209929,
|
345 |
+
"learning_rate": 3.3367139959432044e-07,
|
346 |
+
"logits/chosen": -0.09575805813074112,
|
347 |
+
"logits/rejected": -0.14519043266773224,
|
348 |
+
"logps/chosen": -443.20001220703125,
|
349 |
+
"logps/rejected": -427.79998779296875,
|
350 |
+
"loss": 0.4191,
|
351 |
+
"rewards/accuracies": 0.75,
|
352 |
+
"rewards/chosen": 1.326562523841858,
|
353 |
+
"rewards/margins": 1.966796875,
|
354 |
+
"rewards/rejected": -0.6392577886581421,
|
355 |
+
"step": 220
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 0.4197080291970803,
|
359 |
+
"grad_norm": 109.72645289364215,
|
360 |
+
"learning_rate": 3.2352941176470586e-07,
|
361 |
+
"logits/chosen": 0.01968994177877903,
|
362 |
+
"logits/rejected": -0.03289794921875,
|
363 |
+
"logps/chosen": -485.6000061035156,
|
364 |
+
"logps/rejected": -453.20001220703125,
|
365 |
+
"loss": 0.4353,
|
366 |
+
"rewards/accuracies": 0.75,
|
367 |
+
"rewards/chosen": 1.896875023841858,
|
368 |
+
"rewards/margins": 1.94921875,
|
369 |
+
"rewards/rejected": -0.05209960788488388,
|
370 |
+
"step": 230
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"epoch": 0.43795620437956206,
|
374 |
+
"grad_norm": 54.27538060537205,
|
375 |
+
"learning_rate": 3.133874239350913e-07,
|
376 |
+
"logits/chosen": -0.21235351264476776,
|
377 |
+
"logits/rejected": -0.23594971001148224,
|
378 |
+
"logps/chosen": -502.0,
|
379 |
+
"logps/rejected": -472.20001220703125,
|
380 |
+
"loss": 0.2759,
|
381 |
+
"rewards/accuracies": 0.8125,
|
382 |
+
"rewards/chosen": 1.908203125,
|
383 |
+
"rewards/margins": 2.317187547683716,
|
384 |
+
"rewards/rejected": -0.40947264432907104,
|
385 |
+
"step": 240
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"epoch": 0.4562043795620438,
|
389 |
+
"grad_norm": 209.29865250933202,
|
390 |
+
"learning_rate": 3.0324543610547665e-07,
|
391 |
+
"logits/chosen": 0.01799316331744194,
|
392 |
+
"logits/rejected": 0.07851867377758026,
|
393 |
+
"logps/chosen": -444.6000061035156,
|
394 |
+
"logps/rejected": -399.6000061035156,
|
395 |
+
"loss": 0.4111,
|
396 |
+
"rewards/accuracies": 0.737500011920929,
|
397 |
+
"rewards/chosen": 2.125,
|
398 |
+
"rewards/margins": 2.1265625953674316,
|
399 |
+
"rewards/rejected": -0.0016113281017169356,
|
400 |
+
"step": 250
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"epoch": 0.4744525547445255,
|
404 |
+
"grad_norm": 72.97301814642577,
|
405 |
+
"learning_rate": 2.93103448275862e-07,
|
406 |
+
"logits/chosen": 0.03842773288488388,
|
407 |
+
"logits/rejected": 0.01112976111471653,
|
408 |
+
"logps/chosen": -445.0,
|
409 |
+
"logps/rejected": -411.0,
|
410 |
+
"loss": 0.4229,
|
411 |
+
"rewards/accuracies": 0.75,
|
412 |
+
"rewards/chosen": 1.3894531726837158,
|
413 |
+
"rewards/margins": 1.676855444908142,
|
414 |
+
"rewards/rejected": -0.28840333223342896,
|
415 |
+
"step": 260
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.4927007299270073,
|
419 |
+
"grad_norm": 100.52100065549308,
|
420 |
+
"learning_rate": 2.829614604462475e-07,
|
421 |
+
"logits/chosen": 0.04062499850988388,
|
422 |
+
"logits/rejected": -0.05421142652630806,
|
423 |
+
"logps/chosen": -457.3999938964844,
|
424 |
+
"logps/rejected": -447.79998779296875,
|
425 |
+
"loss": 0.5097,
|
426 |
+
"rewards/accuracies": 0.699999988079071,
|
427 |
+
"rewards/chosen": 1.5515625476837158,
|
428 |
+
"rewards/margins": 1.6711914539337158,
|
429 |
+
"rewards/rejected": -0.1171875,
|
430 |
+
"step": 270
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.5109489051094891,
|
434 |
+
"grad_norm": 71.42885032223506,
|
435 |
+
"learning_rate": 2.7281947261663286e-07,
|
436 |
+
"logits/chosen": -0.0455322265625,
|
437 |
+
"logits/rejected": -0.01320800743997097,
|
438 |
+
"logps/chosen": -512.2000122070312,
|
439 |
+
"logps/rejected": -464.3999938964844,
|
440 |
+
"loss": 0.4505,
|
441 |
+
"rewards/accuracies": 0.7250000238418579,
|
442 |
+
"rewards/chosen": 1.1550781726837158,
|
443 |
+
"rewards/margins": 1.8136718273162842,
|
444 |
+
"rewards/rejected": -0.6611328125,
|
445 |
+
"step": 280
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 0.5291970802919708,
|
449 |
+
"grad_norm": 72.23719994945806,
|
450 |
+
"learning_rate": 2.6267748478701823e-07,
|
451 |
+
"logits/chosen": -0.14443358778953552,
|
452 |
+
"logits/rejected": -0.14687499403953552,
|
453 |
+
"logps/chosen": -442.79998779296875,
|
454 |
+
"logps/rejected": -440.79998779296875,
|
455 |
+
"loss": 0.3643,
|
456 |
+
"rewards/accuracies": 0.75,
|
457 |
+
"rewards/chosen": 1.404394507408142,
|
458 |
+
"rewards/margins": 2.530468702316284,
|
459 |
+
"rewards/rejected": -1.126562476158142,
|
460 |
+
"step": 290
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"epoch": 0.5474452554744526,
|
464 |
+
"grad_norm": 109.10421493067516,
|
465 |
+
"learning_rate": 2.525354969574036e-07,
|
466 |
+
"logits/chosen": 0.01424560509622097,
|
467 |
+
"logits/rejected": 0.12192382663488388,
|
468 |
+
"logps/chosen": -592.4000244140625,
|
469 |
+
"logps/rejected": -598.0,
|
470 |
+
"loss": 0.3889,
|
471 |
+
"rewards/accuracies": 0.762499988079071,
|
472 |
+
"rewards/chosen": 0.956250011920929,
|
473 |
+
"rewards/margins": 2.1015625,
|
474 |
+
"rewards/rejected": -1.142822265625,
|
475 |
+
"step": 300
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"epoch": 0.5656934306569343,
|
479 |
+
"grad_norm": 86.4722981606142,
|
480 |
+
"learning_rate": 2.42393509127789e-07,
|
481 |
+
"logits/chosen": -0.06550292670726776,
|
482 |
+
"logits/rejected": -0.04240722581744194,
|
483 |
+
"logps/chosen": -473.20001220703125,
|
484 |
+
"logps/rejected": -456.3999938964844,
|
485 |
+
"loss": 0.4345,
|
486 |
+
"rewards/accuracies": 0.699999988079071,
|
487 |
+
"rewards/chosen": 0.6993774175643921,
|
488 |
+
"rewards/margins": 1.698828101158142,
|
489 |
+
"rewards/rejected": -0.9986327886581421,
|
490 |
+
"step": 310
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 0.583941605839416,
|
494 |
+
"grad_norm": 57.2804545162538,
|
495 |
+
"learning_rate": 2.3225152129817443e-07,
|
496 |
+
"logits/chosen": 0.05268554762005806,
|
497 |
+
"logits/rejected": 0.06523437798023224,
|
498 |
+
"logps/chosen": -429.20001220703125,
|
499 |
+
"logps/rejected": -381.3999938964844,
|
500 |
+
"loss": 0.3993,
|
501 |
+
"rewards/accuracies": 0.7250000238418579,
|
502 |
+
"rewards/chosen": 0.7642577886581421,
|
503 |
+
"rewards/margins": 1.9884765148162842,
|
504 |
+
"rewards/rejected": -1.222021460533142,
|
505 |
+
"step": 320
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"epoch": 0.6021897810218978,
|
509 |
+
"grad_norm": 170.96405372232695,
|
510 |
+
"learning_rate": 2.2210953346855983e-07,
|
511 |
+
"logits/chosen": -0.09375,
|
512 |
+
"logits/rejected": -0.18121948838233948,
|
513 |
+
"logps/chosen": -411.20001220703125,
|
514 |
+
"logps/rejected": -421.20001220703125,
|
515 |
+
"loss": 0.3965,
|
516 |
+
"rewards/accuracies": 0.7749999761581421,
|
517 |
+
"rewards/chosen": 0.908007800579071,
|
518 |
+
"rewards/margins": 1.976171851158142,
|
519 |
+
"rewards/rejected": -1.068359375,
|
520 |
+
"step": 330
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.6204379562043796,
|
524 |
+
"grad_norm": 93.61816587541509,
|
525 |
+
"learning_rate": 2.1196754563894522e-07,
|
526 |
+
"logits/chosen": -0.10378418117761612,
|
527 |
+
"logits/rejected": -0.03239746019244194,
|
528 |
+
"logps/chosen": -440.3999938964844,
|
529 |
+
"logps/rejected": -413.79998779296875,
|
530 |
+
"loss": 0.5115,
|
531 |
+
"rewards/accuracies": 0.675000011920929,
|
532 |
+
"rewards/chosen": 0.719970703125,
|
533 |
+
"rewards/margins": 1.680078148841858,
|
534 |
+
"rewards/rejected": -0.9598633050918579,
|
535 |
+
"step": 340
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.6386861313868614,
|
539 |
+
"grad_norm": 92.84152158463883,
|
540 |
+
"learning_rate": 2.0182555780933062e-07,
|
541 |
+
"logits/chosen": -0.08485107123851776,
|
542 |
+
"logits/rejected": -0.09698486328125,
|
543 |
+
"logps/chosen": -468.3999938964844,
|
544 |
+
"logps/rejected": -484.0,
|
545 |
+
"loss": 0.4151,
|
546 |
+
"rewards/accuracies": 0.7875000238418579,
|
547 |
+
"rewards/chosen": 0.4109863340854645,
|
548 |
+
"rewards/margins": 2.1148438453674316,
|
549 |
+
"rewards/rejected": -1.707421898841858,
|
550 |
+
"step": 350
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 0.656934306569343,
|
554 |
+
"grad_norm": 116.66381358621938,
|
555 |
+
"learning_rate": 1.91683569979716e-07,
|
556 |
+
"logits/chosen": -0.047119140625,
|
557 |
+
"logits/rejected": -0.0908203125,
|
558 |
+
"logps/chosen": -523.4000244140625,
|
559 |
+
"logps/rejected": -520.4000244140625,
|
560 |
+
"loss": 0.4036,
|
561 |
+
"rewards/accuracies": 0.699999988079071,
|
562 |
+
"rewards/chosen": 0.7984374761581421,
|
563 |
+
"rewards/margins": 1.9406249523162842,
|
564 |
+
"rewards/rejected": -1.1416015625,
|
565 |
+
"step": 360
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"epoch": 0.6751824817518248,
|
569 |
+
"grad_norm": 66.21210834363939,
|
570 |
+
"learning_rate": 1.815415821501014e-07,
|
571 |
+
"logits/chosen": 0.01052246056497097,
|
572 |
+
"logits/rejected": 0.00347900390625,
|
573 |
+
"logps/chosen": -443.3999938964844,
|
574 |
+
"logps/rejected": -418.6000061035156,
|
575 |
+
"loss": 0.4784,
|
576 |
+
"rewards/accuracies": 0.7124999761581421,
|
577 |
+
"rewards/chosen": 0.4449218809604645,
|
578 |
+
"rewards/margins": 1.796484351158142,
|
579 |
+
"rewards/rejected": -1.3522460460662842,
|
580 |
+
"step": 370
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"epoch": 0.6934306569343066,
|
584 |
+
"grad_norm": 96.94205645326319,
|
585 |
+
"learning_rate": 1.7139959432048682e-07,
|
586 |
+
"logits/chosen": -0.06866760551929474,
|
587 |
+
"logits/rejected": -0.07124023139476776,
|
588 |
+
"logps/chosen": -450.6000061035156,
|
589 |
+
"logps/rejected": -419.5,
|
590 |
+
"loss": 0.4503,
|
591 |
+
"rewards/accuracies": 0.675000011920929,
|
592 |
+
"rewards/chosen": 0.5906738042831421,
|
593 |
+
"rewards/margins": 1.701171875,
|
594 |
+
"rewards/rejected": -1.1095702648162842,
|
595 |
+
"step": 380
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"epoch": 0.7116788321167883,
|
599 |
+
"grad_norm": 170.19556173050714,
|
600 |
+
"learning_rate": 1.612576064908722e-07,
|
601 |
+
"logits/chosen": -0.02810058556497097,
|
602 |
+
"logits/rejected": 0.04189453274011612,
|
603 |
+
"logps/chosen": -413.6000061035156,
|
604 |
+
"logps/rejected": -385.79998779296875,
|
605 |
+
"loss": 0.383,
|
606 |
+
"rewards/accuracies": 0.762499988079071,
|
607 |
+
"rewards/chosen": 0.6146484613418579,
|
608 |
+
"rewards/margins": 2.09375,
|
609 |
+
"rewards/rejected": -1.4822266101837158,
|
610 |
+
"step": 390
|
611 |
+
},
|
612 |
+
{
|
613 |
+
"epoch": 0.7299270072992701,
|
614 |
+
"grad_norm": 200.81203370210167,
|
615 |
+
"learning_rate": 1.511156186612576e-07,
|
616 |
+
"logits/chosen": 0.02833252027630806,
|
617 |
+
"logits/rejected": -0.02805175818502903,
|
618 |
+
"logps/chosen": -447.0,
|
619 |
+
"logps/rejected": -401.20001220703125,
|
620 |
+
"loss": 0.4363,
|
621 |
+
"rewards/accuracies": 0.75,
|
622 |
+
"rewards/chosen": 1.0343506336212158,
|
623 |
+
"rewards/margins": 2.0367188453674316,
|
624 |
+
"rewards/rejected": -1.0,
|
625 |
+
"step": 400
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.7481751824817519,
|
629 |
+
"grad_norm": 128.18451740094875,
|
630 |
+
"learning_rate": 1.4097363083164298e-07,
|
631 |
+
"logits/chosen": -0.083251953125,
|
632 |
+
"logits/rejected": -0.05070800706744194,
|
633 |
+
"logps/chosen": -457.0,
|
634 |
+
"logps/rejected": -417.79998779296875,
|
635 |
+
"loss": 0.4099,
|
636 |
+
"rewards/accuracies": 0.824999988079071,
|
637 |
+
"rewards/chosen": 1.0426757335662842,
|
638 |
+
"rewards/margins": 2.3359375,
|
639 |
+
"rewards/rejected": -1.2976562976837158,
|
640 |
+
"step": 410
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.7664233576642335,
|
644 |
+
"grad_norm": 122.2923701591513,
|
645 |
+
"learning_rate": 1.308316430020284e-07,
|
646 |
+
"logits/chosen": 0.02608642540872097,
|
647 |
+
"logits/rejected": -0.01593627966940403,
|
648 |
+
"logps/chosen": -380.6000061035156,
|
649 |
+
"logps/rejected": -373.79998779296875,
|
650 |
+
"loss": 0.4059,
|
651 |
+
"rewards/accuracies": 0.75,
|
652 |
+
"rewards/chosen": 0.92529296875,
|
653 |
+
"rewards/margins": 2.4878907203674316,
|
654 |
+
"rewards/rejected": -1.5636718273162842,
|
655 |
+
"step": 420
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.7846715328467153,
|
659 |
+
"grad_norm": 171.12346779236017,
|
660 |
+
"learning_rate": 1.206896551724138e-07,
|
661 |
+
"logits/chosen": 0.24042968451976776,
|
662 |
+
"logits/rejected": 0.085296630859375,
|
663 |
+
"logps/chosen": -383.6000061035156,
|
664 |
+
"logps/rejected": -373.79998779296875,
|
665 |
+
"loss": 0.4154,
|
666 |
+
"rewards/accuracies": 0.7749999761581421,
|
667 |
+
"rewards/chosen": 0.9688720703125,
|
668 |
+
"rewards/margins": 2.010937452316284,
|
669 |
+
"rewards/rejected": -1.0431640148162842,
|
670 |
+
"step": 430
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"epoch": 0.8029197080291971,
|
674 |
+
"grad_norm": 90.24483614578641,
|
675 |
+
"learning_rate": 1.1054766734279918e-07,
|
676 |
+
"logits/chosen": -0.05828857421875,
|
677 |
+
"logits/rejected": -0.06459961086511612,
|
678 |
+
"logps/chosen": -411.20001220703125,
|
679 |
+
"logps/rejected": -397.0,
|
680 |
+
"loss": 0.4134,
|
681 |
+
"rewards/accuracies": 0.7124999761581421,
|
682 |
+
"rewards/chosen": 1.1129882335662842,
|
683 |
+
"rewards/margins": 1.866796851158142,
|
684 |
+
"rewards/rejected": -0.749707043170929,
|
685 |
+
"step": 440
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"epoch": 0.8211678832116789,
|
689 |
+
"grad_norm": 26.93997549104036,
|
690 |
+
"learning_rate": 1.0040567951318458e-07,
|
691 |
+
"logits/chosen": -0.16145019233226776,
|
692 |
+
"logits/rejected": -0.169921875,
|
693 |
+
"logps/chosen": -453.20001220703125,
|
694 |
+
"logps/rejected": -431.0,
|
695 |
+
"loss": 0.2786,
|
696 |
+
"rewards/accuracies": 0.824999988079071,
|
697 |
+
"rewards/chosen": 1.112890601158142,
|
698 |
+
"rewards/margins": 2.4312500953674316,
|
699 |
+
"rewards/rejected": -1.3162109851837158,
|
700 |
+
"step": 450
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"epoch": 0.8394160583941606,
|
704 |
+
"grad_norm": 59.45894612144818,
|
705 |
+
"learning_rate": 9.026369168356999e-08,
|
706 |
+
"logits/chosen": 0.0780029296875,
|
707 |
+
"logits/rejected": 0.05783691257238388,
|
708 |
+
"logps/chosen": -441.0,
|
709 |
+
"logps/rejected": -403.3999938964844,
|
710 |
+
"loss": 0.3064,
|
711 |
+
"rewards/accuracies": 0.7749999761581421,
|
712 |
+
"rewards/chosen": 1.163671851158142,
|
713 |
+
"rewards/margins": 2.453125,
|
714 |
+
"rewards/rejected": -1.2890625,
|
715 |
+
"step": 460
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"epoch": 0.8576642335766423,
|
719 |
+
"grad_norm": 80.72693168394458,
|
720 |
+
"learning_rate": 8.012170385395538e-08,
|
721 |
+
"logits/chosen": 0.06926269829273224,
|
722 |
+
"logits/rejected": -0.0065063475631177425,
|
723 |
+
"logps/chosen": -476.6000061035156,
|
724 |
+
"logps/rejected": -449.6000061035156,
|
725 |
+
"loss": 0.5556,
|
726 |
+
"rewards/accuracies": 0.7250000238418579,
|
727 |
+
"rewards/chosen": 0.7232666015625,
|
728 |
+
"rewards/margins": 1.98828125,
|
729 |
+
"rewards/rejected": -1.266259789466858,
|
730 |
+
"step": 470
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.8759124087591241,
|
734 |
+
"grad_norm": 28.20404376922917,
|
735 |
+
"learning_rate": 6.997971602434077e-08,
|
736 |
+
"logits/chosen": -0.02747192420065403,
|
737 |
+
"logits/rejected": 0.05877685546875,
|
738 |
+
"logps/chosen": -389.0,
|
739 |
+
"logps/rejected": -377.79998779296875,
|
740 |
+
"loss": 0.3302,
|
741 |
+
"rewards/accuracies": 0.8125,
|
742 |
+
"rewards/chosen": 1.2389647960662842,
|
743 |
+
"rewards/margins": 2.2281250953674316,
|
744 |
+
"rewards/rejected": -0.9869140386581421,
|
745 |
+
"step": 480
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.8941605839416058,
|
749 |
+
"grad_norm": 70.22161951421818,
|
750 |
+
"learning_rate": 5.983772819472617e-08,
|
751 |
+
"logits/chosen": -0.07192382961511612,
|
752 |
+
"logits/rejected": -0.06147461012005806,
|
753 |
+
"logps/chosen": -445.79998779296875,
|
754 |
+
"logps/rejected": -437.6000061035156,
|
755 |
+
"loss": 0.4594,
|
756 |
+
"rewards/accuracies": 0.7250000238418579,
|
757 |
+
"rewards/chosen": 1.417871117591858,
|
758 |
+
"rewards/margins": 1.9235351085662842,
|
759 |
+
"rewards/rejected": -0.505908191204071,
|
760 |
+
"step": 490
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.9124087591240876,
|
764 |
+
"grad_norm": 153.0002143782165,
|
765 |
+
"learning_rate": 4.969574036511156e-08,
|
766 |
+
"logits/chosen": 0.06987304985523224,
|
767 |
+
"logits/rejected": 0.007641601376235485,
|
768 |
+
"logps/chosen": -420.3999938964844,
|
769 |
+
"logps/rejected": -338.79998779296875,
|
770 |
+
"loss": 0.3153,
|
771 |
+
"rewards/accuracies": 0.824999988079071,
|
772 |
+
"rewards/chosen": 1.2451171875,
|
773 |
+
"rewards/margins": 2.368359327316284,
|
774 |
+
"rewards/rejected": -1.123925805091858,
|
775 |
+
"step": 500
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 0.9306569343065694,
|
779 |
+
"grad_norm": 291.65840516029397,
|
780 |
+
"learning_rate": 3.9553752535496954e-08,
|
781 |
+
"logits/chosen": -0.06279297173023224,
|
782 |
+
"logits/rejected": -0.05703125149011612,
|
783 |
+
"logps/chosen": -430.6000061035156,
|
784 |
+
"logps/rejected": -369.0,
|
785 |
+
"loss": 0.3813,
|
786 |
+
"rewards/accuracies": 0.7749999761581421,
|
787 |
+
"rewards/chosen": 1.338476538658142,
|
788 |
+
"rewards/margins": 2.424999952316284,
|
789 |
+
"rewards/rejected": -1.08837890625,
|
790 |
+
"step": 510
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"epoch": 0.948905109489051,
|
794 |
+
"grad_norm": 79.85392566108807,
|
795 |
+
"learning_rate": 2.941176470588235e-08,
|
796 |
+
"logits/chosen": -0.18828125298023224,
|
797 |
+
"logits/rejected": -0.16739502549171448,
|
798 |
+
"logps/chosen": -429.3999938964844,
|
799 |
+
"logps/rejected": -395.0,
|
800 |
+
"loss": 0.315,
|
801 |
+
"rewards/accuracies": 0.800000011920929,
|
802 |
+
"rewards/chosen": 1.3271484375,
|
803 |
+
"rewards/margins": 2.3125,
|
804 |
+
"rewards/rejected": -0.988525390625,
|
805 |
+
"step": 520
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"epoch": 0.9671532846715328,
|
809 |
+
"grad_norm": 139.5351558966506,
|
810 |
+
"learning_rate": 1.9269776876267748e-08,
|
811 |
+
"logits/chosen": -0.09885253757238388,
|
812 |
+
"logits/rejected": -0.02666015550494194,
|
813 |
+
"logps/chosen": -443.3999938964844,
|
814 |
+
"logps/rejected": -425.6000061035156,
|
815 |
+
"loss": 0.3221,
|
816 |
+
"rewards/accuracies": 0.7749999761581421,
|
817 |
+
"rewards/chosen": 1.400390625,
|
818 |
+
"rewards/margins": 2.6953125,
|
819 |
+
"rewards/rejected": -1.2951171398162842,
|
820 |
+
"step": 530
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"epoch": 0.9854014598540146,
|
824 |
+
"grad_norm": 23.962818117622025,
|
825 |
+
"learning_rate": 9.127789046653143e-09,
|
826 |
+
"logits/chosen": 0.04451904445886612,
|
827 |
+
"logits/rejected": 0.0567626953125,
|
828 |
+
"logps/chosen": -394.0,
|
829 |
+
"logps/rejected": -396.6000061035156,
|
830 |
+
"loss": 0.3834,
|
831 |
+
"rewards/accuracies": 0.862500011920929,
|
832 |
+
"rewards/chosen": 0.765002429485321,
|
833 |
+
"rewards/margins": 1.690332055091858,
|
834 |
+
"rewards/rejected": -0.9234374761581421,
|
835 |
+
"step": 540
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.0,
|
839 |
+
"eval_logits/chosen": -0.07358022779226303,
|
840 |
+
"eval_logits/rejected": -0.09998497366905212,
|
841 |
+
"eval_logps/chosen": -466.1538391113281,
|
842 |
+
"eval_logps/rejected": -437.0,
|
843 |
+
"eval_loss": 0.392181396484375,
|
844 |
+
"eval_rewards/accuracies": 0.7403846383094788,
|
845 |
+
"eval_rewards/chosen": 0.7243840098381042,
|
846 |
+
"eval_rewards/margins": 2.152644157409668,
|
847 |
+
"eval_rewards/rejected": -1.426832914352417,
|
848 |
+
"eval_runtime": 8.2786,
|
849 |
+
"eval_samples_per_second": 12.079,
|
850 |
+
"eval_steps_per_second": 1.57,
|
851 |
+
"step": 548
|
852 |
+
}
|
853 |
+
],
|
854 |
+
"logging_steps": 10,
|
855 |
+
"max_steps": 548,
|
856 |
+
"num_input_tokens_seen": 0,
|
857 |
+
"num_train_epochs": 1,
|
858 |
+
"save_steps": 500,
|
859 |
+
"stateful_callbacks": {
|
860 |
+
"TrainerControl": {
|
861 |
+
"args": {
|
862 |
+
"should_epoch_stop": false,
|
863 |
+
"should_evaluate": false,
|
864 |
+
"should_log": false,
|
865 |
+
"should_save": true,
|
866 |
+
"should_training_stop": true
|
867 |
+
},
|
868 |
+
"attributes": {}
|
869 |
+
}
|
870 |
+
},
|
871 |
+
"total_flos": 0.0,
|
872 |
+
"train_batch_size": 2,
|
873 |
+
"trial_name": null,
|
874 |
+
"trial_params": null
|
875 |
+
}
|
last-checkpoint/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccc6d6d6ccc6a292c50503464ca786831eb0e733dd5749ac08f3274417aa7436
|
3 |
+
size 8401
|
last-checkpoint/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
last-checkpoint/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|