Amir13 commited on
Commit
0d2cbf1
·
1 Parent(s): be41b87

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: xlm-roberta-base-uk-base-ner
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # xlm-roberta-base-uk-base-ner
19
+
20
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.2510
23
+ - Precision: 0.5951
24
+ - Recall: 0.6256
25
+ - F1: 0.6100
26
+ - Accuracy: 0.9264
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 32
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 5
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.7224 | 1.0 | 514 | 0.3856 | 0.4590 | 0.4581 | 0.4586 | 0.8996 |
58
+ | 0.3616 | 2.0 | 1028 | 0.2893 | 0.5528 | 0.5533 | 0.5531 | 0.9190 |
59
+ | 0.2783 | 3.0 | 1542 | 0.2652 | 0.5661 | 0.5965 | 0.5809 | 0.9227 |
60
+ | 0.2362 | 4.0 | 2056 | 0.2531 | 0.5882 | 0.6256 | 0.6063 | 0.9263 |
61
+ | 0.2124 | 5.0 | 2570 | 0.2510 | 0.5951 | 0.6256 | 0.6100 | 0.9264 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.25.1
67
+ - Pytorch 1.13.1+cu116
68
+ - Datasets 2.8.0
69
+ - Tokenizers 0.13.2