router-mmBERT-base-v2-text-only

This model is a fine-tuned version of jhu-clsp/mmBERT-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8326
  • Accuracy: 0.6875
  • Precision: 0.6827
  • Recall: 0.6875
  • F1: 0.6846

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.6118 0.4545 20 0.6795 0.6193 0.7300 0.6193 0.6174
2.4002 0.9091 40 0.5451 0.7386 0.7327 0.7386 0.7270
2.1361 1.3636 60 0.8168 0.6705 0.6832 0.6705 0.6747
2.589 1.8182 80 0.5943 0.6364 0.6591 0.6364 0.6426
2.8187 2.2727 100 0.8248 0.5852 0.7404 0.5852 0.5725
2.08 2.7273 120 0.5875 0.7386 0.7409 0.7386 0.7166
1.1623 3.1818 140 0.6528 0.7159 0.7080 0.7159 0.7084
1.5022 3.6364 160 0.6610 0.6932 0.6828 0.6932 0.6834
0.898 4.0909 180 0.7076 0.6705 0.6683 0.6705 0.6693
0.7971 4.5455 200 0.8023 0.7045 0.6969 0.7045 0.6983
0.582 5.0 220 0.8326 0.6875 0.6827 0.6875 0.6846

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu128
  • Datasets 4.2.0
  • Tokenizers 0.22.1
Downloads last month
38
Safetensors
Model size
0.3B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for AmirMohseni/router-mmBERT-base-v2-text-only

Finetuned
(28)
this model