melbandroformer4stems / config_large.yaml
Aname-Tommy's picture
Upload config_large.yaml with huggingface_hub
b201107 verified
audio:
chunk_size: 661500
dim_f: 1024
dim_t: 1101
hop_length: 882
n_fft: 4096
num_channels: 2
sample_rate: 44100
min_mean_abs: 0.0001
model:
dim: 384
depth: 8
stereo: true
num_stems: 4
linear_transformer_depth: 0
time_transformer_depth: 1
freq_transformer_depth: 1
num_bands: 60
dim_head: 64
heads: 8
attn_dropout: 0.0
ff_dropout: 0.0
flash_attn: true
dim_freqs_in: 2049
sample_rate: 44100 # needed for mel filter bank from librosa
stft_n_fft: 4096
stft_hop_length: 882
stft_win_length: 4096
stft_normalized: False
mask_estimator_depth: 2
multi_stft_resolution_loss_weight: 1.0
multi_stft_resolutions_window_sizes: !!python/tuple
- 4096
- 2048
- 1024
- 512
- 256
multi_stft_hop_size: 147
multi_stft_normalized: False
mlp_expansion_factor: 4
use_torch_checkpoint: False # it allows to greatly reduce GPU memory consumption during training (not fully tested)
skip_connection: True # Enable skip connection between transformer blocks - can solve problem with gradients and probably faster training
training:
batch_size: 1
gradient_accumulation_steps: 4
grad_clip: 0
instruments: ['drums', 'bass', 'other', 'vocals']
lr: 2.0e-05
patience: 2
reduce_factor: 0.95
target_instrument: null
num_epochs: 1000
num_steps: 300
q: 0.95
coarse_loss_clip: false
ema_momentum: 0.999
optimizer: adamw
read_metadata_procs: 8 # Number of processes to use during metadata reading for dataset. Can speed up metadata generation
normalize: false
other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental
use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true
augmentations:
enable: false # enable or disable all augmentations (to fast disable if needed)
loudness: false # randomly change loudness of each stem on the range (loudness_min; loudness_max)
loudness_min: 0.5
loudness_max: 1.5
mixup: true # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3)
mixup_probs: !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02)
- 0.2
- 0.02
- 0.002
mixup_loudness_min: 0.5
mixup_loudness_max: 1.5
# apply mp3 compression to mixture only (emulate downloading mp3 from internet)
mp3_compression_on_mixture: 0.01
mp3_compression_on_mixture_bitrate_min: 32
mp3_compression_on_mixture_bitrate_max: 320
mp3_compression_on_mixture_backend: "lameenc"
all:
channel_shuffle: 0.5 # Set 0 or lower to disable
random_inverse: 0.01 # inverse track (better lower probability)
random_polarity: 0.5 # polarity change (multiply waveform to -1)
vocals:
pitch_shift: 1.0
pitch_shift_min_semitones: -12
pitch_shift_max_semitones: 12
seven_band_parametric_eq: 0.5
seven_band_parametric_eq_min_gain_db: -80
seven_band_parametric_eq_max_gain_db: 9
tanh_distortion: 0.5
tanh_distortion_min: 0.1
tanh_distortion_max: 1
time_stretch: 1.0
time_stretch_min_rate: 0.5
time_stretch_max_rate: 2
bass:
pitch_shift: 1.0
pitch_shift_min_semitones: -6
pitch_shift_max_semitones: 6
seven_band_parametric_eq: 0.4
seven_band_parametric_eq_min_gain_db: -32
seven_band_parametric_eq_max_gain_db: 6
tanh_distortion: 1.0
tanh_distortion_min: 0.1
tanh_distortion_max: 0.5
time_stretch: 1.0
time_stretch_min_rate: 0.5
time_stretch_max_rate: 1.5
drums:
pitch_shift: 0.1
pitch_shift_min_semitones: -6
pitch_shift_max_semitones: 6
seven_band_parametric_eq: 0.5
seven_band_parametric_eq_min_gain_db: -24
seven_band_parametric_eq_max_gain_db: 12
tanh_distortion: 0.3
tanh_distortion_min: 0.1
tanh_distortion_max: 0.6
time_stretch: 1.0
time_stretch_min_rate: 0.333
time_stretch_max_rate: 1.5
other:
pitch_shift: 1.0
pitch_shift_min_semitones: -12
pitch_shift_max_semitones: 12
gaussian_noise: 0.4
gaussian_noise_min_amplitude: 0.001
gaussian_noise_max_amplitude: 0.15
time_stretch: 0.01
time_stretch_min_rate: 0.25
time_stretch_max_rate: 1.5
inference:
batch_size: 1
dim_t: 256
num_overlap: 4
normalize: false
loss_multistft:
fft_sizes:
- 1024
- 2048
- 4096
hop_sizes:
- 147
- 256
- 512
win_lengths:
- 1024
- 2048
- 4096
window: "hann_window"
scale: "mel"
n_bins: 128
sample_rate: 44100
perceptual_weighting: true
w_sc: 16.0
w_log_mag: 16.0
w_lin_mag: 16.0
w_phs: 0.0
mag_distance: "L1"