--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased-distilled-squad tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: CU_with_BERT results: [] --- # CU_with_BERT This model is a fine-tuned version of [distilbert/distilbert-base-uncased-distilled-squad](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8013 - Accuracy: 0.6181 - F1: 0.6181 - Precision: 0.6181 - Recall: 0.6181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 187 | 0.8013 | 0.6181 | 0.6181 | 0.6181 | 0.6181 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1