camie-tagger-onnxruntime / infer-refined.py
AngelBottomless's picture
add REFINED-version export without flash attention
bc492d2 verified
import onnxruntime as ort
import numpy as np
import json
from PIL import Image
def preprocess_image(img_path, target_size=512, keep_aspect=True):
"""
Load an image from img_path, convert to RGB,
and resize/pad to (target_size, target_size).
Scales pixel values to [0,1] and returns a (1,3,target_size,target_size) float32 array.
"""
img = Image.open(img_path).convert("RGB")
if keep_aspect:
# Preserve aspect ratio, pad black
w, h = img.size
aspect = w / h
if aspect > 1:
new_w = target_size
new_h = int(new_w / aspect)
else:
new_h = target_size
new_w = int(new_h * aspect)
# Resize with Lanczos
img = img.resize((new_w, new_h), Image.Resampling.LANCZOS)
# Pad to a square
background = Image.new("RGB", (target_size, target_size), (0, 0, 0))
paste_x = (target_size - new_w) // 2
paste_y = (target_size - new_h) // 2
background.paste(img, (paste_x, paste_y))
img = background
else:
# simple direct resize to 512x512
img = img.resize((target_size, target_size), Image.Resampling.LANCZOS)
# Convert to numpy array
arr = np.array(img).astype("float32") / 255.0 # scale to [0,1]
# Transpose from HWC -> CHW
arr = np.transpose(arr, (2, 0, 1))
# Add batch dimension: (1,3,512,512)
arr = np.expand_dims(arr, axis=0)
return arr
def onnx_inference(img_paths,
onnx_path="camie_refined_no_flash.onnx",
threshold=0.325,
metadata_file="metadata.json"):
"""
Loads the ONNX model, runs inference on a list of image paths,
and applies an optional threshold to produce final predictions.
Args:
img_paths: List of paths to images.
onnx_path: Path to the exported ONNX model file.
threshold: Probability threshold for deciding if a tag is predicted.
metadata_file: Path to metadata.json that contains idx_to_tag etc.
Returns:
A list of dicts, each containing:
{
"initial_logits": np.ndarray of shape (N_tags,),
"refined_logits": np.ndarray of shape (N_tags,),
"predicted_tags": list of tag indices that exceeded threshold,
...
}
one dict per input image.
"""
# 1) Initialize ONNX runtime session
session = ort.InferenceSession(onnx_path, providers=["CPUExecutionProvider"])
# Optional: for GPU usage, see if "CUDAExecutionProvider" is available
# session = ort.InferenceSession(onnx_path, providers=["CUDAExecutionProvider"])
# 2) Pre-load metadata
with open(metadata_file, "r", encoding="utf-8") as f:
metadata = json.load(f)
idx_to_tag = metadata["idx_to_tag"] # e.g. { "0": "brown_hair", "1": "blue_eyes", ... }
# 3) Preprocess each image into a batch
batch_tensors = []
for img_path in img_paths:
x = preprocess_image(img_path, target_size=512, keep_aspect=True)
batch_tensors.append(x)
# Concatenate along the batch dimension => shape (batch_size, 3, 512, 512)
batch_input = np.concatenate(batch_tensors, axis=0)
# 4) Run inference
input_name = session.get_inputs()[0].name # typically "image"
outputs = session.run(None, {input_name: batch_input})
# Typically we get [initial_tags, refined_tags] as output
initial_preds, refined_preds = outputs # shapes => (batch_size, 70527)
# 5) For each image in batch, convert logits to predictions if desired
batch_results = []
for i in range(initial_preds.shape[0]):
# Extract one sample's logits
init_logit = initial_preds[i, :] # shape (N_tags,)
ref_logit = refined_preds[i, :] # shape (N_tags,)
# Convert to probabilities with sigmoid
ref_prob = 1.0 / (1.0 + np.exp(-ref_logit))
# Threshold
pred_indices = np.where(ref_prob >= threshold)[0]
# Build result for this image
result_dict = {
"initial_logits": init_logit,
"refined_logits": ref_logit,
"predicted_indices": pred_indices,
"predicted_tags": [idx_to_tag[str(idx)] for idx in pred_indices] # map index->tag name
}
batch_results.append(result_dict)
return batch_results
if __name__ == "__main__":
# Example usage
images = ["image1.jpg", "image2.jpg", "image3.jpg"]
results = onnx_inference(images,
onnx_path="camie_refined_no_flash.onnx",
threshold=0.325,
metadata_file="metadata.json")
for i, res in enumerate(results):
print(f"Image: {images[i]}")
print(f" # of predicted tags above threshold: {len(res['predicted_indices'])}")
print(f" Some predicted tags: {res['predicted_tags'][:10]} (Show up to 10)")
print()