AngelBottomless commited on
Commit
f7165bd
·
verified ·
1 Parent(s): bc492d2

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -0
app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import onnxruntime as ort
3
+ import numpy as np
4
+ from PIL import Image
5
+ import json
6
+ from huggingface_hub import hf_hub_download
7
+
8
+ # Load the ONNX model and metadata once at startup (optimizes performance)
9
+ MODEL_REPO = "AngelBottomless/camie-tagger-onnxruntime"
10
+ MODEL_FILE = "camie_tagger_initial.onnx" # using the smaller initial model for speed
11
+ META_FILE = "metadata.json"
12
+
13
+ # Download model and metadata from HF Hub (cache_dir="." will cache in the Space)
14
+ model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE, cache_dir=".")
15
+ meta_path = hf_hub_download(repo_id=MODEL_REPO, filename=META_FILE, cache_dir=".")
16
+ session = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"])
17
+ metadata = json.load(open(meta_path, "r", encoding="utf-8"))
18
+
19
+ # Preprocessing: resize image to 512x512 and normalize to match training
20
+ def preprocess_image(pil_image: Image.Image) -> np.ndarray:
21
+ img = pil_image.convert("RGB").resize((512, 512))
22
+ arr = np.array(img).astype(np.float32) / 255.0 # scale pixel values to [0,1]
23
+ arr = np.transpose(arr, (2, 0, 1)) # HWC -> CHW
24
+ arr = np.expand_dims(arr, 0) # add batch dimension -> (1,3,512,512)
25
+ return arr
26
+
27
+ # Inference: run the ONNX model and collect tags above threshold
28
+ def predict_tags(pil_image: Image.Image) -> str:
29
+ # 1. Preprocess image to numpy
30
+ input_tensor = preprocess_image(pil_image)
31
+ # 2. Run model (both initial and refined logits are output)
32
+ input_name = session.get_inputs()[0].name
33
+ initial_logits, refined_logits = session.run(None, {input_name: input_tensor})
34
+ # 3. Convert logits to probabilities (using sigmoid since multi-label)
35
+ probs = 1 / (1 + np.exp(-refined_logits)) # shape (1, 70527)
36
+ probs = probs[0] # remove batch dim -> (70527,)
37
+ # 4. Thresholding: get tag names for which probability >= category threshold (or default)
38
+ idx_to_tag = metadata["idx_to_tag"] # map index -> tag string
39
+ tag_to_category = metadata.get("tag_to_category", {}) # map tag -> category
40
+ category_thresholds = metadata.get("category_thresholds", {})# category-specific thresholds
41
+ default_threshold = 0.325
42
+ predicted_tags = []
43
+ for idx, prob in enumerate(probs):
44
+ tag = idx_to_tag[str(idx)]
45
+ cat = tag_to_category.get(tag, "unknown")
46
+ threshold = category_thresholds.get(cat, default_threshold)
47
+ if prob >= threshold:
48
+ # Include this tag; replace underscores with spaces for readability
49
+ predicted_tags.append(tag.replace("_", " "))
50
+ # 5. Return tags as comma-separated string
51
+ if not predicted_tags:
52
+ return "No tags found."
53
+ # Join tags, maybe sorted by name or leave unsorted. Here we sort alphabetically for consistency.
54
+ predicted_tags.sort()
55
+ return ", ".join(predicted_tags)
56
+
57
+ # Create a simple Gradio interface
58
+ demo = gr.Interface(
59
+ fn=predict_tags,
60
+ inputs=gr.Image(type="pil", label="Upload Image"),
61
+ outputs=gr.Textbox(label="Predicted Tags", lines=3),
62
+ title="Camie Tagger (ONNX) – Simple Demo",
63
+ description="Upload an anime/manga illustration to get relevant tags predicted by the Camie Tagger model.",
64
+ # You can optionally add example images if available in the Space directory:
65
+ examples=[["example1.jpg"], ["example2.png"]] # (filenames should exist in the Space)
66
+ )
67
+
68
+ # Launch the app (in HF Spaces, just calling demo.launch() is typically not required; the Space will run app automatically)
69
+ demo.launch()