import gradio as gr import onnxruntime as ort import numpy as np from PIL import Image import json from huggingface_hub import hf_hub_download # Load the ONNX model and metadata once at startup (optimizes performance) MODEL_REPO = "AngelBottomless/camie-tagger-onnxruntime" MODEL_FILE = "camie_tagger_initial.onnx" # using the smaller initial model for speed META_FILE = "metadata.json" # Download model and metadata from HF Hub (cache_dir="." will cache in the Space) model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE, cache_dir=".") meta_path = hf_hub_download(repo_id=MODEL_REPO, filename=META_FILE, cache_dir=".") session = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"]) metadata = json.load(open(meta_path, "r", encoding="utf-8")) # Preprocessing: resize image to 512x512 and normalize to match training def preprocess_image(pil_image: Image.Image) -> np.ndarray: img = pil_image.convert("RGB").resize((512, 512)) arr = np.array(img).astype(np.float32) / 255.0 # scale pixel values to [0,1] arr = np.transpose(arr, (2, 0, 1)) # HWC -> CHW arr = np.expand_dims(arr, 0) # add batch dimension -> (1,3,512,512) return arr # Inference: run the ONNX model and collect tags above threshold def predict_tags(pil_image: Image.Image) -> str: # 1. Preprocess image to numpy input_tensor = preprocess_image(pil_image) # 2. Run model (both initial and refined logits are output) input_name = session.get_inputs()[0].name initial_logits, refined_logits = session.run(None, {input_name: input_tensor}) # 3. Convert logits to probabilities (using sigmoid since multi-label) probs = 1 / (1 + np.exp(-refined_logits)) # shape (1, 70527) probs = probs[0] # remove batch dim -> (70527,) # 4. Thresholding: get tag names for which probability >= category threshold (or default) idx_to_tag = metadata["idx_to_tag"] # map index -> tag string tag_to_category = metadata.get("tag_to_category", {}) # map tag -> category category_thresholds = metadata.get("category_thresholds", {})# category-specific thresholds default_threshold = 0.325 predicted_tags = [] for idx, prob in enumerate(probs): tag = idx_to_tag[str(idx)] cat = tag_to_category.get(tag, "unknown") threshold = category_thresholds.get(cat, default_threshold) if prob >= threshold: # Include this tag; replace underscores with spaces for readability predicted_tags.append(tag.replace("_", " ")) # 5. Return tags as comma-separated string if not predicted_tags: return "No tags found." # Join tags, maybe sorted by name or leave unsorted. Here we sort alphabetically for consistency. predicted_tags.sort() return ", ".join(predicted_tags) # Create a simple Gradio interface demo = gr.Interface( fn=predict_tags, inputs=gr.Image(type="pil", label="Upload Image"), outputs=gr.Textbox(label="Predicted Tags", lines=3), title="Camie Tagger (ONNX) – Simple Demo", description="Upload an anime/manga illustration to get relevant tags predicted by the Camie Tagger model.", # You can optionally add example images if available in the Space directory: examples=[["example1.jpg"], ["example2.png"]] # (filenames should exist in the Space) ) # Launch the app (in HF Spaces, just calling demo.launch() is typically not required; the Space will run app automatically) demo.launch()