AnishJoshi commited on
Commit
68b425f
·
verified ·
1 Parent(s): c2f1278

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -172
README.md CHANGED
@@ -1,199 +1,73 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
 
 
 
 
 
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
73
 
74
- [More Information Needed]
 
 
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
 
 
 
 
 
 
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
 
3
  ---
4
 
5
  # Model Card for Model ID
6
 
7
+ Finetuned on the [AnishJoshi/nl2bash-custom](https://huggingface.co/datasets/AnishJoshi/nl2bash-custom) dataset for generating bash code based on natural language descriptions.
 
8
 
9
 
10
  ## Model Details
11
 
12
+ - **Model Name:** CodeLlama2-Finetuned-NL2Bash
13
+ - **Base Model:** CodeLlama2
14
+ - **Task:** Natural Language to Bash Script Conversion
15
+ - **Framework:** PyTorch
16
+ - **Fine-tuning Dataset:** Custom dataset of natural language commands and corresponding Bash scripts, available [here](https://huggingface.co/datasets/AnishJoshi/nl2bash-custom)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ ### Model Description
 
 
19
 
20
+ - **Developed by:** Anish Joshi
21
+ - **Model type:** CausalLM
22
+ - **Finetuned from model:** Codellama2
23
 
24
+ ## Files Included
25
 
26
+ - `adapter_config.json`: Configuration file for the adapter layers.
27
+ - `adapter_model.safetensors`: Weights of the adapter layers in the Safetensors format.
28
+ - `optimizer.pt`: State of the optimizer used during training.
29
+ - `rng_state.pth`: State of the random number generator.
30
+ - `scheduler.pt`: State of the learning rate scheduler.
31
+ - `special_tokens_map.json`: Mapping for special tokens used by the tokenizer.
32
+ - `tokenizer.json`: Tokenizer model including the vocabulary.
33
+ - `tokenizer_config.json`: Configuration settings for the tokenizer.
34
+ - `trainer_state.json`: State of the trainer including training metrics.
35
+ - `training_args.bin`: Training arguments used for fine-tuning.
36
+ - `README.md
37
 
38
+ ## Usage
39
 
40
+ # Load model directly
41
+ ```
42
+ from transformers import AutoTokenizer, AutoModelForCausalLM
43
 
44
+ tokenizer = AutoTokenizer.from_pretrained("AnishJoshi/codellama2-finetuned-nl2bash-fin")
45
+ model = AutoModelForCausalLM.from_pretrained("AnishJoshi/codellama2-finetuned-nl2bash-fin")
46
+ ```
47
 
48
  ## Training Details
49
 
50
+ Training details available at [Finetuning Notebook](https://github.com/AnishJoshi13/Bash-Scripting-Code-Assistant/tree/main/notebooks/finetuning.ipynb)
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
 
53
  #### Training Hyperparameters
54
 
55
+ Training arguments and configuration are set using TrainingArguments and LoraConfig. The model is fine-tuned using the following parameters:
56
+
57
+ - `output_dir: codellama2-finetuned-nl2bash` - Directory to save the fine-tuned model.
58
+ - `per_device_train_batch_size`: 2 - Batch size per device.
59
+ - `gradient_accumulation_steps`: 16 - Number of gradient accumulation steps.
60
+ - `optim`: paged_adamw_32bit - Optimizer type.
61
+ - `learning_rate`: 2e-4 - Learning rate.
62
+ - `lr_scheduler_type`: cosine - Learning rate scheduler type.
63
+ - `save_strategy`: epoch - Strategy to save checkpoints.
64
+ - `logging_steps`: 10 - Number of steps between logging.
65
+ - `num_train_epochs`: 1 - Number of training epochs.
66
+ - `max_steps`: 100 - Maximum number of training steps.
67
+ - `fp16`: True - Use 16-bit floating-point precision.
68
+ - `push_to_hub`: False - Whether to push the model to Hugging Face Hub.
69
+ - `report_to`: none - Reporting destination.
70
 
71
  ## Evaluation
72
 
73
+ Evaulation metrics and calculations available at [Evaluation Notebook](https://github.com/AnishJoshi13/Bash-Scripting-Code-Assistant/tree/main/notebooks/evaluation.ipynb)