|
{ |
|
"architecture_plans": { |
|
"arch_class_name": "ResEncL", |
|
"arch_kwargs": null, |
|
"arch_kwargs_requiring_import": null |
|
}, |
|
"pretrain_plan": { |
|
"dataset_name": "Dataset745_OpenNeuro_v2", |
|
"plans_name": "nnsslPlans", |
|
"original_median_spacing_after_transp": [ |
|
1, |
|
1, |
|
1 |
|
], |
|
"image_reader_writer": "SimpleITKIO", |
|
"transpose_forward": [ |
|
0, |
|
1, |
|
2 |
|
], |
|
"transpose_backward": [ |
|
0, |
|
1, |
|
2 |
|
], |
|
"configurations": { |
|
"onemmiso": { |
|
"data_identifier": "nnsslPlans_3d_fullres", |
|
"preprocessor_name": "DefaultPreprocessor", |
|
"spacing_style": "onemmiso", |
|
"normalization_schemes": [ |
|
"ZScoreNormalization" |
|
], |
|
"use_mask_for_norm": [ |
|
false |
|
], |
|
"resampling_fn_data": "resample_data_or_seg_to_shape", |
|
"resampling_fn_data_kwargs": { |
|
"is_seg": false, |
|
"order": 3, |
|
"order_z": 0, |
|
"force_separate_z": null |
|
}, |
|
"resampling_fn_mask": "resample_data_or_seg_to_shape", |
|
"resampling_fn_mask_kwargs": { |
|
"is_seg": true, |
|
"order": 1, |
|
"order_z": 0, |
|
"force_separate_z": null |
|
}, |
|
"spacing": [ |
|
1, |
|
1, |
|
1 |
|
], |
|
"patch_size": [ |
|
160, |
|
160, |
|
160 |
|
] |
|
} |
|
}, |
|
"experiment_planner_used": "FixedResEncUNetPlanner" |
|
}, |
|
"pretrain_num_input_channels": 1, |
|
"recommended_downstream_patchsize": [ |
|
160, |
|
160, |
|
160 |
|
], |
|
"key_to_encoder": "encoder.stages", |
|
"key_to_stem": "encoder.stem", |
|
"keys_to_in_proj": [ |
|
"encoder.stem.convs.0.conv", |
|
"encoder.stem.convs.0.all_modules.0" |
|
], |
|
"key_to_lpe": null, |
|
"citations": [ |
|
{ |
|
"type": "Architecture", |
|
"name": "ResEncL", |
|
"apa_citations": [ |
|
"Isensee, F., Wald, T., Ulrich, C., Baumgartner, M., Roy, S., Maier-Hein, K., & Jaeger, P. F. (2024, October). nnu-net revisited: A call for rigorous validation in 3d medical image segmentation. MICCAI." |
|
] |
|
}, |
|
{ |
|
"type": "Pretraining Method", |
|
"name": "Volume Fusion", |
|
"apa_citations": [ |
|
"Wang, G., Wu, J., Luo, X., Liu, X., Li, K., & Zhang, S. (2023). Mis-fm: 3d medical image segmentation using foundation models pretrained on a large-scale unannotated dataset. arXiv preprint arXiv:2306.16925." |
|
] |
|
}, |
|
{ |
|
"type": "Pre-Training Dataset", |
|
"name": "OpenMind", |
|
"apa_citations": [ |
|
"Wald, T., Ulrich, C., Suprijadi, J., Ziegler, S., Nohel, M., Peretzke, R., ... & Maier-Hein, K. H. (2024). An OpenMind for 3D medical vision self-supervised learning. arXiv preprint arXiv:2412.17041." |
|
] |
|
}, |
|
{ |
|
"type": "Framework", |
|
"name": "nnssl", |
|
"apa_citations": [ |
|
"Wald, T., Ulrich, C., Lukyanenko, S., Goncharov, A., Paderno, A., Maerkisch, L., ... & Maier-Hein, K. (2024). Revisiting MAE pre-training for 3D medical image segmentation. CVPR." |
|
] |
|
} |
|
], |
|
"trainer_name": "VolumeFusionTrainer_BS8_lr_1e3" |
|
} |