{ "architecture_plans": { "arch_class_name": "ResEncL", "arch_kwargs": null, "arch_kwargs_requiring_import": null }, "pretrain_plan": { "dataset_name": "Dataset745_OpenNeuro_v2", "plans_name": "nnsslPlans", "original_median_spacing_after_transp": [ 1, 1, 1 ], "image_reader_writer": "SimpleITKIO", "transpose_forward": [ 0, 1, 2 ], "transpose_backward": [ 0, 1, 2 ], "configurations": { "onemmiso": { "data_identifier": "nnsslPlans_3d_fullres", "preprocessor_name": "DefaultPreprocessor", "spacing_style": "onemmiso", "normalization_schemes": [ "ZScoreNormalization" ], "use_mask_for_norm": [ false ], "resampling_fn_data": "resample_data_or_seg_to_shape", "resampling_fn_data_kwargs": { "is_seg": false, "order": 3, "order_z": 0, "force_separate_z": null }, "resampling_fn_mask": "resample_data_or_seg_to_shape", "resampling_fn_mask_kwargs": { "is_seg": true, "order": 1, "order_z": 0, "force_separate_z": null }, "spacing": [ 1, 1, 1 ], "patch_size": [ 160, 160, 160 ] } }, "experiment_planner_used": "FixedResEncUNetPlanner" }, "pretrain_num_input_channels": 1, "recommended_downstream_patchsize": [ 160, 160, 160 ], "key_to_encoder": "encoder.stages", "key_to_stem": "encoder.stem", "keys_to_in_proj": [ "encoder.stem.convs.0.conv", "encoder.stem.convs.0.all_modules.0" ], "key_to_lpe": null, "citations": [ { "type": "Architecture", "name": "ResEncL", "apa_citations": [ "Isensee, F., Wald, T., Ulrich, C., Baumgartner, M., Roy, S., Maier-Hein, K., & Jaeger, P. F. (2024, October). nnu-net revisited: A call for rigorous validation in 3d medical image segmentation. MICCAI." ] }, { "type": "Pretraining Method", "name": "Volume Fusion", "apa_citations": [ "Wang, G., Wu, J., Luo, X., Liu, X., Li, K., & Zhang, S. (2023). Mis-fm: 3d medical image segmentation using foundation models pretrained on a large-scale unannotated dataset. arXiv preprint arXiv:2306.16925." ] }, { "type": "Pre-Training Dataset", "name": "OpenMind", "apa_citations": [ "Wald, T., Ulrich, C., Suprijadi, J., Ziegler, S., Nohel, M., Peretzke, R., ... & Maier-Hein, K. H. (2024). An OpenMind for 3D medical vision self-supervised learning. arXiv preprint arXiv:2412.17041." ] }, { "type": "Framework", "name": "nnssl", "apa_citations": [ "Wald, T., Ulrich, C., Lukyanenko, S., Goncharov, A., Paderno, A., Maerkisch, L., ... & Maier-Hein, K. (2024). Revisiting MAE pre-training for 3D medical image segmentation. CVPR." ] } ], "trainer_name": "VolumeFusionTrainer_BS8_lr_1e3" }