AreejB commited on
Commit
ffa287e
·
verified ·
1 Parent(s): f782ed5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -68
README.md CHANGED
@@ -32,13 +32,6 @@ The model recreates the work of this [Greek emotion extractor](https://huggingfa
32
  - **Language(s) (NLP):** English
33
  - **Finetuned from model [optional]:** [wav2vec2](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english)
34
 
35
- ### Model Sources [optional]
36
-
37
- <!-- Provide the basic links for the model. -->
38
-
39
- - **Repository:** [More Information Needed]
40
- - **Paper [optional]:** [More Information Needed]
41
- - **Demo [optional]:** [More Information Needed]
42
 
43
  ## How to Get Started with the Model
44
 
@@ -52,88 +45,41 @@ Use the code below to get started with the model.
52
 
53
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
54
 
55
- [More Information Needed]
56
 
57
  ### Training Procedure
58
 
59
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
60
-
61
- #### Preprocessing [optional]
62
-
63
- [More Information Needed]
64
-
65
-
66
- #### Training Hyperparameters
67
-
68
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
69
 
70
- #### Speeds, Sizes, Times [optional]
71
-
72
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
73
-
74
- [More Information Needed]
75
 
76
  ## Evaluation
77
 
78
- <!-- This section describes the evaluation protocols and provides the results. -->
79
-
80
- ### Testing Data, Factors & Metrics
81
 
82
- #### Testing Data
83
 
84
- <!-- This should link to a Dataset Card if possible. -->
85
 
86
- [More Information Needed]
87
-
88
- #### Factors
89
 
90
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
91
 
92
  [More Information Needed]
93
 
94
- #### Metrics
95
 
96
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
97
-
98
- [More Information Needed]
99
-
100
- ### Results
101
-
102
- [More Information Needed]
103
-
104
- #### Summary
105
-
106
-
107
-
108
- ## Model Examination [optional]
109
-
110
- <!-- Relevant interpretability work for the model goes here -->
111
-
112
- [More Information Needed]
113
-
114
- ## Environmental Impact
115
-
116
- - **Hardware Type:** [More Information Needed]
117
- - **Hours used:** [More Information Needed]
118
- - **Cloud Provider:** [More Information Needed]
119
- - **Compute Region:** [More Information Needed]
120
- - **Carbon Emitted:** [More Information Needed]
121
-
122
- ### Compute Infrastructure
123
- Used Google Colab for training.
124
-
125
- #### Software
126
-
127
- [More Information Needed]
128
 
129
- ## Citation [optional]
130
 
131
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
132
 
133
- **BibTeX:**
134
 
135
  [More Information Needed]
136
 
137
  **APA:**
138
 
139
- [More Information Needed]
 
32
  - **Language(s) (NLP):** English
33
  - **Finetuned from model [optional]:** [wav2vec2](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english)
34
 
 
 
 
 
 
 
 
35
 
36
  ## How to Get Started with the Model
37
 
 
45
 
46
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
47
 
48
+ The RAVDESS dataset was split into training, validation and test sets with 60, 20 and 20 splits, respectively.
49
 
50
  ### Training Procedure
51
 
52
+ The fine-tuning process was centred on four hyper-parameters:
53
+ - the number of batches (4, 8),
54
+ - gradient accumulation steps (GAS) (2, 4, 6, 8),
55
+ - number of epochs (10, 20) and
56
+ - the learning rate (1e-3, 1e-4, 1e-5).
 
 
 
 
 
57
 
58
+ Each experiment was repeated 10 times.
 
 
 
 
59
 
60
  ## Evaluation
61
 
62
+ The set of hyper-parameters resulting in the best performance is: 4 batches, 4 GAS, 10 epochs and 1e-4 learning rate
 
 
63
 
64
+ ## Testing
65
 
66
+ The model was retrained on the combined train and validation sets using the best hyper-parameter set. The performance on the test set has an average Accuracy and F1 scores of 84.84% (SD 2 and 2.08, respectively)
67
 
 
 
 
68
 
69
+ ## Results
70
 
71
  [More Information Needed]
72
 
 
73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
+ <!-- ## Citation [optional] -->
76
 
77
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
78
 
79
+ <!-- **BibTeX:**
80
 
81
  [More Information Needed]
82
 
83
  **APA:**
84
 
85
+ [More Information Needed] -->