--- language: en license: mit tags: - fake-news-detection - deberta-v3-large - text-classification - binary-classification - news-classification datasets: - mrisdal/fake-news - jainpooja/fake-news-detection - clmentbisaillon/fake-and-real-news-dataset metrics: - accuracy - f1 - precision - recall widget: - text: "Scientists announce breakthrough discovery of alien life on Mars!" example_title: "Suspicious Claim" - text: "The Federal Reserve announced a 0.25% interest rate increase following their monthly meeting." example_title: "Financial News" model-index: - name: Arko007/fact-check1-v1 results: - task: type: text-classification name: Fake News Detection metrics: - type: accuracy value: 99.98 name: Validation Accuracy - type: f1 value: 99.98 name: Validation F1-Score --- # 🏆 Elite Fake News Detection Model ## Model Description This is a **state-of-the-art** fake news detection model based on **DeBERTa-v3-large**, achieving **99.98% accuracy** on validation data. The model was fine-tuned on a carefully curated and deduplicated dataset combining multiple high-quality fake news datasets, totaling **51,319 samples** after preprocessing. ## 🚀 Performance Highlights - **Validation Accuracy**: 99.98% - **Test Accuracy**: 99.94% - **F1-Score**: 99.98% - **Precision**: 99.97% - **Recall**: 100.00% ## Model Architecture - **Base Model**: microsoft/deberta-v3-large - **Task**: Binary Text Classification (Real vs Fake News) - **Parameters**: ~400M parameters - **Training Hardware**: NVIDIA A100-SXM4-80GB ## Training Details - **Training Steps**: 640 - **Batch Size**: 64 - **Learning Rate**: 3e-05 - **Max Length**: 512 tokens - **Training Time**: 0.43 hours - **Gradient Checkpointing**: Non-reentrant (memory optimized) ## Dataset Information **Total Samples**: 51,319 - **Training**: 41,055 samples - **Validation**: 5,132 samples - **Test**: 5,132 samples - **Fake News**: 30,123 samples - **Real News**: 21,196 samples **Source Datasets**: - `mrisdal/fake-news` - `jainpooja/fake-news-detection` - `clmentbisaillon/fake-and-real-news-dataset` ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load model and tokenizer model_name = "Arko007/fact-check1-v1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Example prediction function def predict_fake_news(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) prediction = torch.argmax(probabilities, dim=-1).item() labels = {0: "REAL", 1: "FAKE"} confidence = probabilities[0][prediction].item() return { "prediction": labels[prediction], "confidence": confidence, "probabilities": { "REAL": probabilities[0][0].item(), "FAKE": probabilities[0][1].item() } } # Test the model text = "Breaking: Scientists discover new planet in our solar system!" result = predict_fake_news(text) print(f"Prediction: {result['prediction']} ({result['confidence']:.2%} confidence)") ``` ## Model Performance This model achieves **research-grade performance** on fake news detection, with near-perfect accuracy across all metrics. The high precision and recall indicate excellent balance between catching fake news while avoiding false positives on real news. ## Limitations and Bias - Trained primarily on English news articles - Performance may vary on news domains not represented in training data - May reflect biases present in the source datasets - Designed for binary classification (fake vs real) only ## Citation ```bibtex @misc{fake-news-deberta-2025, author = {Arko007}, title = {Elite Fake News Detection with DeBERTa-v3-Large}, year = {2025}, publisher = {Hugging Face}, url = {[https://huggingface.co/](https://huggingface.co/)Arko007/fact-check1-v1} } ``` ## License MIT License - Feel free to use this model for research and applications. --- **Built with ❤️ using A100 80GB + DeBERTa-v3-Large**