Ashpgsem commited on
Commit
24ab889
·
verified ·
1 Parent(s): 90c4fde

Add model card (README.md)

Browse files
Files changed (1) hide show
  1. README.md +59 -0
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - dummy-data
4
+ library_name: scikit-learn
5
+ license: apache-2.0
6
+ metrics:
7
+ - r2_score
8
+ model_name: Linear Regression Model V2
9
+ tags:
10
+ - linear-regression
11
+ - example
12
+ - scikit-learn
13
+ ---
14
+
15
+ # Linear Regression Model V2
16
+
17
+ This is a simple linear regression model trained on a dummy dataset.
18
+
19
+ ## Model Description
20
+
21
+ This model predicts a `target` variable based on two features, `feature1` and `feature2`. It's a basic example to demonstrate model saving and uploading to Hugging Face Hub.
22
+
23
+ ## Training Data
24
+
25
+ The model was trained on a small, synthetic dataset:
26
+
27
+ feature1: [1, 2, 3, 4, 5]
28
+ feature2: [5, 4, 3, 2, 1]
29
+ target: [2, 4, 6, 8, 10]
30
+
31
+
32
+ ## Usage
33
+
34
+ To use this model, you can load it using `joblib` and make predictions:
35
+
36
+
37
+ import joblib
38
+ from huggingface_hub import hf_hub_download
39
+
40
+ # Download the model file
41
+ model_path = hf_hub_download(repo_id="Ashpgsem/rdmai", filename="linear_regression_modelV2.joblib")
42
+
43
+ # Load the model
44
+ model = joblib.load(model_path)
45
+
46
+ # Make a prediction
47
+ import pandas as pd
48
+ new_data = pd.DataFrame([{'feature1': 6, 'feature2': 0}])
49
+ prediction = model.predict(new_data)
50
+ print(f"Prediction: {prediction}")
51
+
52
+
53
+ ## Evaluation
54
+
55
+ Since this is a dummy model, formal evaluation metrics are not extensively provided. The model perfectly fits the provided dummy data.
56
+
57
+ ## Limitations
58
+
59
+ This model is for demonstration purposes only and should not be used for real-world applications without proper training on relevant data and thorough evaluation.