AshutoshAI commited on
Commit
c9cd3bc
·
verified ·
1 Parent(s): bea8bef

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,3 +1,14 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Mental Health Prediction Model
2
+ ## Overview
3
+ This project predicts mental health status (Low, Moderate, High) using a Flask app and an XGBoost model.
4
+ ## Files
5
+ - app.py: Flask app for predictions
6
+ - index.html: Web interface
7
+ - mental_health_model_final.pkl: Trained XGBoost model
8
+ - scaler_final.pkl: Scaler for preprocessing
9
+ - le_gender_final.pkl: Label encoder for Gender
10
+ - le_target_final.pkl: Label encoder for target
11
+ ## How to Use
12
+ 1. Install dependencies: `pip install -r requirements.txt`
13
+ 2. Run the app: `python app.py`
14
+ 3. Access at `http://localhost:5000`
app.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify, send_from_directory
2
+ import pandas as pd
3
+ import numpy as np
4
+ import joblib
5
+ import os
6
+
7
+ app = Flask(__name__)
8
+
9
+ # Load the model and preprocessing objects
10
+ model = joblib.load('mental_health_model_final.pkl')
11
+ scaler = joblib.load('scaler_final.pkl')
12
+ le_gender = joblib.load('le_gender_final.pkl')
13
+ le_target = joblib.load('le_target_final.pkl')
14
+
15
+ # Print feature importance
16
+ columns = ['Sentiment_Score', 'HRV', 'Sleep_Hours', 'Activity', 'Age', 'Gender', 'Work_Study_Hours']
17
+ print("Feature Importance:")
18
+ for feature, importance in zip(columns, model.feature_importances_):
19
+ print(f"{feature}: {importance:.4f}")
20
+
21
+ # Serve the HTML file
22
+ @app.route('/')
23
+ def serve_html():
24
+ return send_from_directory('.', 'index.html')
25
+
26
+ @app.route('/predict', methods=['POST'])
27
+ def predict():
28
+ try:
29
+ # Get the input data from the request
30
+ data = request.get_json()
31
+
32
+ # Convert to DataFrame
33
+ columns = ['Sentiment_Score', 'HRV', 'Sleep_Hours', 'Activity', 'Age', 'Gender', 'Work_Study_Hours']
34
+ new_data = pd.DataFrame([data], columns=columns)
35
+
36
+ # Validate input
37
+ if new_data['Sleep_Hours'].iloc[0] < 0:
38
+ return jsonify({'error': 'Sleep_Hours cannot be negative'}), 400
39
+ if new_data['Work_Study_Hours'].iloc[0] < 0:
40
+ return jsonify({'error': 'Work_Study_Hours cannot be negative'}), 400
41
+ if new_data['Gender'].iloc[0] not in ['Male', 'Female']:
42
+ return jsonify({'error': 'Gender must be Male or Female'}), 400
43
+
44
+ # Preprocess the data
45
+ new_data['Gender'] = le_gender.transform(new_data['Gender'])
46
+ new_data_scaled = scaler.transform(new_data)
47
+
48
+ # Predict
49
+ prediction = model.predict(new_data_scaled)[0]
50
+ probs = model.predict_proba(new_data_scaled)[0]
51
+ health_status = {0: "Low", 1: "Moderate", 2: "High"}
52
+ result = health_status[prediction]
53
+
54
+ # Include probabilities in the response
55
+ prob_dict = {health_status[i]: float(prob) for i, prob in enumerate(probs)}
56
+
57
+ # Add a disclaimer for borderline predictions
58
+ max_prob = probs.max()
59
+ disclaimer = ""
60
+ if max_prob < 0.7:
61
+ disclaimer = "This prediction is uncertain (confidence below 70%). Please consult a professional for an accurate assessment."
62
+
63
+ # Add a simple chatbot-like message
64
+ if result == "Low":
65
+ chatbot_message = "It looks like you might be experiencing low mental health. Consider reaching out to a friend or professional for support."
66
+ elif result == "Moderate":
67
+ chatbot_message = "Your mental health seems moderate. Keep up with self-care practices, and consider talking to someone if you feel overwhelmed."
68
+ else: # High
69
+ chatbot_message = "Great news! Your mental health appears to be high. Keep maintaining your healthy habits!"
70
+
71
+ return jsonify({
72
+ 'prediction': result,
73
+ 'probabilities': prob_dict,
74
+ 'disclaimer': disclaimer,
75
+ 'model_accuracy': 'This model has a cross-validation accuracy of 76.8%.',
76
+ 'chatbot_message': chatbot_message
77
+ })
78
+ except Exception as e:
79
+ return jsonify({'error': str(e)}), 400
80
+
81
+ @app.route('/feedback', methods=['POST'])
82
+ def feedback():
83
+ try:
84
+ feedback_data = request.get_json()
85
+ with open('feedback.log', 'a') as f:
86
+ f.write(f"Prediction: {feedback_data['prediction']}, Accurate: {feedback_data['accurate']}\n")
87
+ return jsonify({'message': 'Feedback received'})
88
+ except Exception as e:
89
+ return jsonify({'error': str(e)}), 400
90
+
91
+ if __name__ == '__main__':
92
+ app.run(debug=True, host='0.0.0.0', port=5000)
index.html ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html>
3
+ <head>
4
+ <title>Mental Health Prediction</title>
5
+ <style>
6
+ body {
7
+ font-family: Arial, sans-serif;
8
+ margin: 0;
9
+ padding: 0;
10
+ display: flex;
11
+ justify-content: center;
12
+ align-items: center;
13
+ height: 100vh;
14
+ background: linear-gradient(to right, #36d1dc, #5b86e5);
15
+ animation: fadeIn 1s ease-in-out;
16
+ }
17
+ @keyframes fadeIn {
18
+ from { opacity: 0; }
19
+ to { opacity: 1; }
20
+ }
21
+ .container {
22
+ background: white;
23
+ padding: 20px;
24
+ border-radius: 10px;
25
+ box-shadow: 0 10px 20px rgba(0, 0, 0, 0.2);
26
+ text-align: center;
27
+ width: 400px;
28
+ animation: slideUp 0.8s ease-in-out;
29
+ }
30
+ @keyframes slideUp {
31
+ from { transform: translateY(30px); opacity: 0; }
32
+ to { transform: translateY(0); opacity: 1; }
33
+ }
34
+ h2 {
35
+ color: #333;
36
+ }
37
+ label {
38
+ display: block;
39
+ text-align: left;
40
+ margin: 5px 0 2px;
41
+ color: #555;
42
+ }
43
+ input, select, button {
44
+ width: 100%;
45
+ padding: 10px;
46
+ margin: 5px 0 10px;
47
+ border: 1px solid #ccc;
48
+ border-radius: 5px;
49
+ transition: 0.3s;
50
+ box-sizing: border-box;
51
+ }
52
+ input:focus, select:focus {
53
+ border-color: #5b86e5;
54
+ box-shadow: 0 0 8px rgba(91, 134, 229, 0.6);
55
+ }
56
+ button {
57
+ background: #007bff;
58
+ color: white;
59
+ cursor: pointer;
60
+ border: none;
61
+ font-weight: bold;
62
+ transition: 0.3s;
63
+ }
64
+ button:hover {
65
+ background: #0056b3;
66
+ transform: scale(1.05);
67
+ }
68
+ #result, #probabilities, #disclaimer, #model-accuracy {
69
+ margin-top: 10px;
70
+ color: #333;
71
+ }
72
+ #result {
73
+ font-weight: bold;
74
+ color: #007bff;
75
+ }
76
+ #probabilities table {
77
+ width: 100%;
78
+ margin-top: 10px;
79
+ border-collapse: collapse;
80
+ }
81
+ #probabilities th, #probabilities td {
82
+ padding: 5px;
83
+ border: 1px solid #ccc;
84
+ text-align: center;
85
+ }
86
+ #probabilities th {
87
+ background: #f0f0f0;
88
+ }
89
+ #disclaimer {
90
+ font-style: italic;
91
+ color: #e74c3c;
92
+ }
93
+ #model-accuracy {
94
+ font-size: 0.9em;
95
+ color: #555;
96
+ }
97
+ </style>
98
+ <script>
99
+ function predictMentalHealth() {
100
+ // Collect form data
101
+ const form = document.getElementById('predictionForm');
102
+ const formData = new FormData(form);
103
+
104
+ // Convert form data to JSON
105
+ const data = {
106
+ Sentiment_Score: parseFloat(formData.get('Sentiment_Score')),
107
+ HRV: parseFloat(formData.get('HRV')),
108
+ Sleep_Hours: parseFloat(formData.get('Sleep_Hours')),
109
+ Activity: parseInt(formData.get('Activity')),
110
+ Age: parseInt(formData.get('Age')),
111
+ Gender: formData.get('Gender'),
112
+ Work_Study_Hours: parseFloat(formData.get('Work_Study_Hours'))
113
+ };
114
+
115
+ // Validate input
116
+ if (isNaN(data.Sentiment_Score) || data.Sentiment_Score < 0 || data.Sentiment_Score > 1) {
117
+ document.getElementById('result').innerText = 'Error: Sentiment Score must be between 0 and 1';
118
+ return;
119
+ }
120
+ if (isNaN(data.HRV) || data.HRV < 0) {
121
+ document.getElementById('result').innerText = 'Error: HRV cannot be negative';
122
+ return;
123
+ }
124
+ if (isNaN(data.Sleep_Hours) || data.Sleep_Hours < 0) {
125
+ document.getElementById('result').innerText = 'Error: Sleep Hours cannot be negative';
126
+ return;
127
+ }
128
+ if (isNaN(data.Activity) || data.Activity < 0) {
129
+ document.getElementById('result').innerText = 'Error: Activity cannot be negative';
130
+ return;
131
+ }
132
+ if (isNaN(data.Age) || data.Age < 0) {
133
+ document.getElementById('result').innerText = 'Error: Age cannot be negative';
134
+ return;
135
+ }
136
+ if (isNaN(data.Work_Study_Hours) || data.Work_Study_Hours < 0) {
137
+ document.getElementById('result').innerText = 'Error: Work/Study Hours cannot be negative';
138
+ return;
139
+ }
140
+
141
+ // Send request to the Flask API
142
+ fetch('/predict', {
143
+ method: 'POST',
144
+ headers: {
145
+ 'Content-Type': 'application/json'
146
+ },
147
+ body: JSON.stringify(data)
148
+ })
149
+ .then(response => response.json())
150
+ .then(data => {
151
+ if (data.prediction) {
152
+ // Display prediction
153
+ document.getElementById('result').innerText = 'Prediction: ' + data.prediction;
154
+
155
+ // Display probabilities in a table
156
+ const probsTable = document.getElementById('probabilities-table');
157
+ probsTable.innerHTML = '';
158
+ for (const [status, prob] of Object.entries(data.probabilities)) {
159
+ const row = probsTable.insertRow();
160
+ row.insertCell(0).innerText = status;
161
+ row.insertCell(1).innerText = (prob * 100).toFixed(2) + '%';
162
+ }
163
+
164
+ // Display disclaimer and model accuracy
165
+ document.getElementById('disclaimer').innerText = data.disclaimer || '';
166
+ document.getElementById('model-accuracy').innerText = data.model_accuracy;
167
+ } else {
168
+ document.getElementById('result').innerText = 'Error: ' + data.error;
169
+ document.getElementById('probabilities-table').innerHTML = '';
170
+ document.getElementById('disclaimer').innerText = '';
171
+ document.getElementById('model-accuracy').innerText = '';
172
+ }
173
+ })
174
+ .catch(error => {
175
+ document.getElementById('result').innerText = 'Request failed';
176
+ document.getElementById('probabilities-table').innerHTML = '';
177
+ document.getElementById('disclaimer').innerText = '';
178
+ document.getElementById('model-accuracy').innerText = '';
179
+ console.error('Error:', error);
180
+ });
181
+ }
182
+ </script>
183
+ </head>
184
+ <body>
185
+ <div class="container">
186
+ <h2>Mental Health Prediction</h2>
187
+ <form id="predictionForm" onsubmit="event.preventDefault(); predictMentalHealth();">
188
+ <label>Sentiment Score (0 to 1):</label>
189
+ <input type="number" step="0.01" name="Sentiment_Score" required>
190
+
191
+ <label>HRV (Heart Rate Variability):</label>
192
+ <input type="number" step="0.01" name="HRV" required>
193
+
194
+ <label>Sleep Hours:</label>
195
+ <input type="number" step="0.1" name="Sleep_Hours" required>
196
+
197
+ <label>Activity (Steps/Day):</label>
198
+ <input type="number" name="Activity" required>
199
+
200
+ <label>Age:</label>
201
+ <input type="number" name="Age" required>
202
+
203
+ <label>Gender:</label>
204
+ <select name="Gender" required>
205
+ <option value="Male">Male</option>
206
+ <option value="Female">Female</option>
207
+ </select>
208
+
209
+ <label>Work/Study Hours:</label>
210
+ <input type="number" step="0.1" name="Work_Study_Hours" required>
211
+
212
+ <button type="submit">Predict</button>
213
+ </form>
214
+ <h3 id="result"></h3>
215
+ <div id="probabilities">
216
+ <table id="probabilities-table">
217
+ <tr><th>Status</th><th>Probability</th></tr>
218
+ </table>
219
+ </div>
220
+ <div id="disclaimer"></div>
221
+ <div id="model-accuracy"></div>
222
+ </div>
223
+ </body>
224
+ </html>
le_gender_final.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae0c50f426a66d9e70886753e66e2493f723d9ca80c53709ea7796ce47eac18a
3
+ size 543
le_target_final.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:356dcc80ba23896d339529d04c0b7cda36bedd28f3ab9d56661f5c6433135eb1
3
+ size 555
mental_health_model_final.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9003f5d318ac9071a886e2af9384936b511bf4417a8969e595b67c05fa76db05
3
+ size 1261470
requirements.txt ADDED
Binary file (5.81 kB). View file
 
scaler_final.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9dbdce9b70795ca2c1d9396f541c96e5084971eb9d9d5138e3898b97112587e
3
+ size 1167
upload_to_hf.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import HfApi
2
+
3
+ # Initialize the API (will use the token from CLI authentication)
4
+ api = HfApi()
5
+
6
+ # Define your repository ID
7
+ repo_id = "AshutoshAI/mental-health-predictor"
8
+
9
+ # Upload the entire folder, excluding unnecessary files
10
+ api.upload_folder(
11
+ folder_path="D:/DSMINIPRO",
12
+ repo_id=repo_id,
13
+ repo_type="model",
14
+ ignore_patterns=["*.csv", "*le_gender.pkl", "*le_target.pkl", "*mental_health_model.pkl", "*scaler.pkl", "*scaler_updated.pkl", "*.log"],
15
+ )
16
+ print(f"Successfully uploaded to {repo_id}")