from flask import Flask, request, jsonify, send_from_directory import pandas as pd import numpy as np import joblib import os app = Flask(__name__) # Load the model and preprocessing objects model = joblib.load('mental_health_model_final.pkl') scaler = joblib.load('scaler_final.pkl') le_gender = joblib.load('le_gender_final.pkl') le_target = joblib.load('le_target_final.pkl') # Print feature importance columns = ['Sentiment_Score', 'HRV', 'Sleep_Hours', 'Activity', 'Age', 'Gender', 'Work_Study_Hours'] print("Feature Importance:") for feature, importance in zip(columns, model.feature_importances_): print(f"{feature}: {importance:.4f}") # Serve the HTML file @app.route('/') def serve_html(): return send_from_directory('.', 'index.html') @app.route('/predict', methods=['POST']) def predict(): try: # Get the input data from the request data = request.get_json() # Convert to DataFrame columns = ['Sentiment_Score', 'HRV', 'Sleep_Hours', 'Activity', 'Age', 'Gender', 'Work_Study_Hours'] new_data = pd.DataFrame([data], columns=columns) # Validate input if new_data['Sleep_Hours'].iloc[0] < 0: return jsonify({'error': 'Sleep_Hours cannot be negative'}), 400 if new_data['Work_Study_Hours'].iloc[0] < 0: return jsonify({'error': 'Work_Study_Hours cannot be negative'}), 400 if new_data['Gender'].iloc[0] not in ['Male', 'Female']: return jsonify({'error': 'Gender must be Male or Female'}), 400 # Preprocess the data new_data['Gender'] = le_gender.transform(new_data['Gender']) new_data_scaled = scaler.transform(new_data) # Predict prediction = model.predict(new_data_scaled)[0] probs = model.predict_proba(new_data_scaled)[0] health_status = {0: "Low", 1: "Moderate", 2: "High"} result = health_status[prediction] # Include probabilities in the response prob_dict = {health_status[i]: float(prob) for i, prob in enumerate(probs)} # Add a disclaimer for borderline predictions max_prob = probs.max() disclaimer = "" if max_prob < 0.7: disclaimer = "This prediction is uncertain (confidence below 70%). Please consult a professional for an accurate assessment." # Add a simple chatbot-like message if result == "Low": chatbot_message = "It looks like you might be experiencing low mental health. Consider reaching out to a friend or professional for support." elif result == "Moderate": chatbot_message = "Your mental health seems moderate. Keep up with self-care practices, and consider talking to someone if you feel overwhelmed." else: # High chatbot_message = "Great news! Your mental health appears to be high. Keep maintaining your healthy habits!" return jsonify({ 'prediction': result, 'probabilities': prob_dict, 'disclaimer': disclaimer, 'model_accuracy': 'This model has a cross-validation accuracy of 76.8%.', 'chatbot_message': chatbot_message }) except Exception as e: return jsonify({'error': str(e)}), 400 @app.route('/feedback', methods=['POST']) def feedback(): try: feedback_data = request.get_json() with open('feedback.log', 'a') as f: f.write(f"Prediction: {feedback_data['prediction']}, Accurate: {feedback_data['accurate']}\n") return jsonify({'message': 'Feedback received'}) except Exception as e: return jsonify({'error': str(e)}), 400 if __name__ == '__main__': app.run(debug=True, host='0.0.0.0', port=5000)