developerPushkal commited on
Commit
710aca8
·
verified ·
1 Parent(s): c480242

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Card: RoBERTa-Base Helpdesk Performance Analysis Model
2
+
3
+ ## Model Overview
4
+
5
+ This model is a fine-tuned version of `facebook/bart-base` trained for content generation tasks. It has been optimized for high-quality text generation while maintaining efficiency.
6
+
7
+ ## Model Details
8
+
9
+ - **Model Architecture:** Roberta-base
10
+ - **Base Model:** `facebook/bart-base`
11
+ - **Task:** Content Generation
12
+ - **Dataset:** cardiffnlp/tweet_eval
13
+ - **Framework:** Hugging Face Transformers
14
+ - **Training Hardware:** CUDA
15
+ -
16
+ ## Installation
17
+
18
+ To use the model, install the necessary dependencies:
19
+
20
+ ```sh
21
+ pip install transformers torch datasets evaluate
22
+ ```
23
+
24
+ ## Usage
25
+
26
+ ### Load the Model and Tokenizer
27
+
28
+ ```python
29
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
30
+ import torch
31
+
32
+ # Load fine-tuned model
33
+ model_path = "fine_tuned_model"
34
+ device = "cuda" if torch.cuda.is_available() else "cpu"
35
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_path).to(device)
36
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
37
+
38
+ # Define test text
39
+ input_text = "Generate a creative story about space exploration."
40
+ inputs = tokenizer(input_text, return_tensors="pt").to(device)
41
+
42
+ # Generate output
43
+ with torch.no_grad():
44
+ output_ids = model.generate(**inputs)
45
+ output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
46
+
47
+ print(f"Generated Content: {output_text}")
48
+ ```
49
+
50
+ ## Training Details
51
+
52
+ ### Data Preprocessing
53
+
54
+ The dataset was split into:
55
+
56
+ - **Train:** 80%
57
+ - **Validation:** 10%
58
+ - **Test:** 10%
59
+
60
+ Tokenization was applied using the `facebook/bart-base` tokenizer with truncation and padding.
61
+
62
+ ### Fine-Tuning
63
+
64
+ - **Epochs:** 3
65
+ - **Batch Size:** 16
66
+ - **Learning Rate:** 2e-5
67
+ - **Weight Decay:** 0.01
68
+ - **Evaluation Strategy:** Epoch-wise
69
+
70
+ ## Evaluation Metrics
71
+
72
+ The model was evaluated using the ROUGE metric:
73
+
74
+ ```python
75
+ import evaluate
76
+ rouge = evaluate.load("rouge")
77
+
78
+ # Example evaluation
79
+ references = ["The generated story was highly creative and engaging."]
80
+ predictions = ["The output was imaginative and captivating."]
81
+ results = rouge.compute(predictions=predictions, references=references)
82
+ print("Evaluation Metrics (ROUGE):", results)
83
+ ```
84
+
85
+ ## Performance
86
+
87
+ - **ROUGE Score:** Achieved competitive scores for content generation quality
88
+ - **Inference Speed:** Optimized for efficient text generation
89
+ - **Generalization:** Works well on diverse text generation tasks but may require domain-specific fine-tuning.
90
+
91
+ ## Limitations
92
+
93
+ - May generate slightly verbose or overly detailed content in some cases.
94
+ - Requires GPU for optimal performance.
95
+
96
+ ## Future Improvements
97
+
98
+ - Experiment with larger models like `bart-large` for enhanced generation quality.
99
+ - Fine-tune on domain-specific datasets for better adaptation to specific content types.