Update README.md
Browse files
README.md
CHANGED
@@ -48,32 +48,7 @@ To improve inference efficiency, models were converted to FP16:
|
|
48 |
import torch
|
49 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
50 |
|
51 |
-
|
52 |
-
models = [
|
53 |
-
"fine_tuned_models/en-mr/final/",
|
54 |
-
"fine_tuned_models/es-pt/final/",
|
55 |
-
"fine_tuned_models/eo-nl/final/",
|
56 |
-
"fine_tuned_models/en-mr/final/"
|
57 |
-
]
|
58 |
-
|
59 |
-
output_fp16_dir = "fine_tuned_models_fp16"
|
60 |
-
|
61 |
-
# Convert each model to FP16
|
62 |
-
for model_path in models:
|
63 |
-
print(f"Quantizing {model_path} to FP16...")
|
64 |
-
|
65 |
-
# Load model and tokenizer
|
66 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, torch_dtype=torch.float16)
|
67 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
68 |
-
|
69 |
-
# Define save path
|
70 |
-
save_path = model_path.replace("fine_tuned_models", output_fp16_dir)
|
71 |
-
|
72 |
-
# Save quantized model
|
73 |
-
model.save_pretrained(save_path)
|
74 |
-
tokenizer.save_pretrained(save_path)
|
75 |
-
|
76 |
-
print(f"Saved quantized model to: {save_path}\n")
|
77 |
|
78 |
# Inference Example
|
79 |
```
|
|
|
48 |
import torch
|
49 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
50 |
|
51 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Inference Example
|
54 |
```
|