Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# OpenAI Whisper-Base Fine-Tuned Model for AI-transcriptionist
|
2 |
+
|
3 |
+
This repository hosts a fine-tuned version of the OpenAI Whisper-Base model optimized for AI-transcriptionist tasks using the [Mozilla Common Voice 13.0](https://commonvoice.mozilla.org/) dataset. The model is designed to efficiently transcribe speech into text while maintaining high accuracy.
|
4 |
+
|
5 |
+
## Model Details
|
6 |
+
- **Model Architecture**: OpenAI Whisper-Base
|
7 |
+
- **Task**: AI-transcriptionist
|
8 |
+
- **Dataset**: [Mozilla Common Voice 11.0](https://commonvoice.mozilla.org/)
|
9 |
+
- **Fine-tuning Framework**: Hugging Face Transformers
|
10 |
+
|
11 |
+
## π Usage
|
12 |
+
|
13 |
+
### Installation
|
14 |
+
```bash
|
15 |
+
pip install transformers torch
|
16 |
+
```
|
17 |
+
|
18 |
+
### Loading the Model
|
19 |
+
```python
|
20 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
21 |
+
import torch
|
22 |
+
|
23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
|
25 |
+
model_name = "AventIQ-AI/whisper-AI-transcriptionist"
|
26 |
+
model = WhisperForConditionalGeneration.from_pretrained(model_name).to(device)
|
27 |
+
processor = WhisperProcessor.from_pretrained(model_name)
|
28 |
+
```
|
29 |
+
|
30 |
+
### Speech-to-Text Inference
|
31 |
+
```python
|
32 |
+
import torchaudio
|
33 |
+
|
34 |
+
# Load and process audio file
|
35 |
+
def load_audio(file_path, target_sampling_rate=16000):
|
36 |
+
# Load audio file
|
37 |
+
waveform, sample_rate = torchaudio.load(file_path)
|
38 |
+
|
39 |
+
# Convert to mono if stereo
|
40 |
+
if waveform.shape[0] > 1:
|
41 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
42 |
+
|
43 |
+
# Resample if needed
|
44 |
+
if sample_rate != target_sampling_rate:
|
45 |
+
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sampling_rate)(waveform)
|
46 |
+
|
47 |
+
return waveform.squeeze(0).numpy()
|
48 |
+
|
49 |
+
input_audio_path = "/kaggle/input/test-data-2/Friday 4h04m pm.m4a" # Change this to your audio file
|
50 |
+
audio_array = load_audio(input_audio_path)
|
51 |
+
|
52 |
+
input_features = processor(audio_array, sampling_rate=16000, return_tensors="pt").input_features
|
53 |
+
input_features = input_features.to(device)
|
54 |
+
|
55 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language="en", task="transcribe")
|
56 |
+
|
57 |
+
with torch.no_grad():
|
58 |
+
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
59 |
+
|
60 |
+
# Decode output
|
61 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
62 |
+
|
63 |
+
print(f"Transcribed Text: {transcription}")
|
64 |
+
```
|
65 |
+
|
66 |
+
## π Evaluation Results
|
67 |
+
After fine-tuning the Whisper-Base model for speech-to-text, we evaluated the model's performance on the validation set from the Common Voice 11.0 dataset. The following results were obtained:
|
68 |
+
|
69 |
+
| Metric | Score | Meaning |
|
70 |
+
|------------|--------|------------------------------------------------|
|
71 |
+
| **WER** | 9.2% | Word Error Rate: Measures transcription accuracy |
|
72 |
+
| **CER** | 5.5% | Character Error Rate: Measures character-level accuracy |
|
73 |
+
|
74 |
+
## Fine-Tuning Details
|
75 |
+
|
76 |
+
### Dataset
|
77 |
+
The Mozilla Common Voice 11.0 dataset, containing diverse multilingual speech samples, was used for fine-tuning the model.
|
78 |
+
|
79 |
+
### Training
|
80 |
+
- **Number of epochs**: 6
|
81 |
+
- **Batch size**: 16
|
82 |
+
- **Evaluation strategy**: epochs
|
83 |
+
- **Learning Rate**: 5e-6
|
84 |
+
|
85 |
+
## π Repository Structure
|
86 |
+
```bash
|
87 |
+
.
|
88 |
+
βββ model/ # Contains the quantized model files
|
89 |
+
βββ tokenizer_config/ # Tokenizer configuration and vocabulary files
|
90 |
+
βββ model.safetensors/ # Quantized Model
|
91 |
+
βββ README.md # Model documentation
|
92 |
+
```
|
93 |
+
|
94 |
+
## β οΈ Limitations
|
95 |
+
- The model may struggle with highly noisy or overlapping speech.
|
96 |
+
- Performance may vary across different accents and dialects.
|
97 |
+
|
98 |
+
## π€ Contributing
|
99 |
+
Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.
|
100 |
+
|