File size: 1,965 Bytes
2517f3d cf70ad1 2517f3d 57e80a8 cf70ad1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
language: en
tags:
- image-classification
- vision-transformer
- protovit
- pins
license: mit
---
# ProtoViT Model - deit_small_patch16_224 (PINS)
This is a fine-tuned deit_small_patch16_224 model trained on Pinterest Face Recognition Dataset from the paper ["Interpretable Image Classification with Adaptive Prototype-based Vision Transformers"](https://arxiv.org/abs/2410.20722).
## Model Details
- Base architecture: deit_small_patch16_224
- Dataset: Pinterest Face Recognition Dataset
- Number of classes: 155
- Fine-tuned checkpoint: `14finetuned0.8042`
- Accuracy: 80.42%
## Training Details
- Number of prototypes: 1550
- Prototype size: 1×1
- Training process: Warm up → Joint training → Push → Last layer fine-tuning
- Weight coefficients:
- Cross entropy: 1.0
- Clustering: -0.8
- Separation: 0.1
- L1: 0.01
- Orthogonal: 0.001
- Coherence: 0.003
- Batch size: 128
## Dataset Description
A face recognition dataset collected from Pinterest containing 155 different identity classes
Dataset link: https://www.kaggle.com/datasets/hereisburak/pins-face-recognition
## Usage
```python
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
# Load model and processor
model = AutoModelForImageClassification.from_pretrained("Ayushnangia/protovit-deit_small_patch16_224-pins")
processor = AutoImageProcessor.from_pretrained("Ayushnangia/protovit-deit_small_patch16_224-pins")
# Prepare image
image = Image.open("path_to_your_image.jpg")
inputs = processor(images=image, return_tensors="pt")
# Make prediction
outputs = model(**inputs)
predicted_label = outputs.logits.argmax(-1).item()
```
## Additional Information
Github repo by authors of the paper ![GitHub repository][https://github.com/Henrymachiyu/ProtoViT]
For more details about the implementation and training process, please visit the my fork of ProtoVit [GitHub repository](https://github.com/ayushnangia/ProtoViT).
|