Delete cooldown
Browse files- cooldown/iter_0060000_hf/config.json +0 -27
- cooldown/iter_0060000_hf/generation_config.json +0 -6
- cooldown/iter_0060000_hf/model.safetensors +0 -3
- cooldown/iter_0060000_hf/qwen.tiktoken +0 -0
- cooldown/iter_0060000_hf/qwen_generation_utils.py +0 -416
- cooldown/iter_0060000_hf/special_tokens_map.json +0 -6
- cooldown/iter_0060000_hf/tokenization_qwen.py +0 -276
- cooldown/iter_0060000_hf/tokenizer_config.json +0 -11
- cooldown/iter_0070000_hf/config.json +0 -27
- cooldown/iter_0070000_hf/generation_config.json +0 -6
- cooldown/iter_0070000_hf/model.safetensors +0 -3
- cooldown/iter_0070000_hf/qwen.tiktoken +0 -0
- cooldown/iter_0070000_hf/qwen_generation_utils.py +0 -416
- cooldown/iter_0070000_hf/special_tokens_map.json +0 -6
- cooldown/iter_0070000_hf/tokenization_qwen.py +0 -276
- cooldown/iter_0070000_hf/tokenizer_config.json +0 -11
- cooldown/iter_0084772_hf/config.json +0 -27
- cooldown/iter_0084772_hf/generation_config.json +0 -6
- cooldown/iter_0084772_hf/model.safetensors +0 -3
- cooldown/iter_0084772_hf/qwen.tiktoken +0 -0
- cooldown/iter_0084772_hf/qwen_generation_utils.py +0 -416
- cooldown/iter_0084772_hf/special_tokens_map.json +0 -6
- cooldown/iter_0084772_hf/tokenization_qwen.py +0 -276
- cooldown/iter_0084772_hf/tokenizer_config.json +0 -11
cooldown/iter_0060000_hf/config.json
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"architectures": [
|
3 |
-
"MistralForCausalLM"
|
4 |
-
],
|
5 |
-
"attention_bias": false,
|
6 |
-
"attention_dropout": 0.0,
|
7 |
-
"bos_token_id": 151849,
|
8 |
-
"eos_token_id": 151850,
|
9 |
-
"head_dim": 64,
|
10 |
-
"hidden_act": "silu",
|
11 |
-
"hidden_size": 576,
|
12 |
-
"initializer_range": 0.02,
|
13 |
-
"intermediate_size": 1536,
|
14 |
-
"max_position_embeddings": 8192,
|
15 |
-
"model_type": "mistral",
|
16 |
-
"num_attention_heads": 9,
|
17 |
-
"num_hidden_layers": 30,
|
18 |
-
"num_key_value_heads": 3,
|
19 |
-
"rms_norm_eps": 1e-05,
|
20 |
-
"rope_theta": 10000,
|
21 |
-
"sliding_window": 8192,
|
22 |
-
"tie_word_embeddings": true,
|
23 |
-
"torch_dtype": "bfloat16",
|
24 |
-
"transformers_version": "4.44.2",
|
25 |
-
"use_cache": true,
|
26 |
-
"vocab_size": 151851
|
27 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0060000_hf/generation_config.json
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_from_model_config": true,
|
3 |
-
"bos_token_id": 151849,
|
4 |
-
"eos_token_id": 151850,
|
5 |
-
"transformers_version": "4.44.2"
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0060000_hf/model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ea50f85473000535c9d7faa85799ce52f22f9f229f2d33b00e078640beae89ee
|
3 |
-
size 562302352
|
|
|
|
|
|
|
|
cooldown/iter_0060000_hf/qwen.tiktoken
DELETED
The diff for this file is too large to render.
See raw diff
|
|
cooldown/iter_0060000_hf/qwen_generation_utils.py
DELETED
@@ -1,416 +0,0 @@
|
|
1 |
-
# Copyright (c) Alibaba Cloud.
|
2 |
-
#
|
3 |
-
# This source code is licensed under the license found in the
|
4 |
-
# LICENSE file in the root directory of this source tree.
|
5 |
-
|
6 |
-
"""Generation support."""
|
7 |
-
|
8 |
-
from typing import Tuple, List, Union, Iterable
|
9 |
-
|
10 |
-
import numpy as np
|
11 |
-
import torch
|
12 |
-
import torch.nn.functional as F
|
13 |
-
from transformers import PreTrainedTokenizer
|
14 |
-
from transformers import logging
|
15 |
-
from transformers.generation import LogitsProcessor
|
16 |
-
|
17 |
-
logger = logging.get_logger(__name__)
|
18 |
-
|
19 |
-
# Types.
|
20 |
-
HistoryType = List[Tuple[str, str]]
|
21 |
-
TokensType = List[int]
|
22 |
-
BatchTokensType = List[List[int]]
|
23 |
-
|
24 |
-
|
25 |
-
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
|
26 |
-
for tokens in batch:
|
27 |
-
context_length = len(tokens)
|
28 |
-
if context_length < seq_length:
|
29 |
-
tokens.extend([pad_id] * (seq_length - context_length))
|
30 |
-
return batch
|
31 |
-
|
32 |
-
|
33 |
-
def get_ltor_masks_and_position_ids(
|
34 |
-
data,
|
35 |
-
eod_token,
|
36 |
-
reset_position_ids,
|
37 |
-
reset_attention_mask,
|
38 |
-
eod_mask_loss,
|
39 |
-
):
|
40 |
-
"""Build masks and position id for left to right model."""
|
41 |
-
|
42 |
-
# Extract batch size and sequence length.
|
43 |
-
micro_batch_size, seq_length = data.size()
|
44 |
-
|
45 |
-
# Attention mask (lower triangular).
|
46 |
-
if reset_attention_mask:
|
47 |
-
att_mask_batch = micro_batch_size
|
48 |
-
else:
|
49 |
-
att_mask_batch = 1
|
50 |
-
attention_mask = torch.tril(
|
51 |
-
torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
|
52 |
-
).view(att_mask_batch, 1, seq_length, seq_length)
|
53 |
-
|
54 |
-
# Loss mask.
|
55 |
-
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
|
56 |
-
if eod_mask_loss:
|
57 |
-
loss_mask[data == eod_token] = 0.0
|
58 |
-
|
59 |
-
# Position ids.
|
60 |
-
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
|
61 |
-
position_ids = position_ids.unsqueeze(0).expand_as(data)
|
62 |
-
# We need to clone as the ids will be modifed based on batch index.
|
63 |
-
if reset_position_ids:
|
64 |
-
position_ids = position_ids.clone()
|
65 |
-
|
66 |
-
if reset_position_ids or reset_attention_mask:
|
67 |
-
# Loop through the batches:
|
68 |
-
for b in range(micro_batch_size):
|
69 |
-
|
70 |
-
# Find indecies where EOD token is.
|
71 |
-
eod_index = position_ids[b, data[b] == eod_token]
|
72 |
-
# Detach indecies from positions if going to modify positions.
|
73 |
-
if reset_position_ids:
|
74 |
-
eod_index = eod_index.clone()
|
75 |
-
|
76 |
-
# Loop through EOD indecies:
|
77 |
-
prev_index = 0
|
78 |
-
for j in range(eod_index.size()[0]):
|
79 |
-
i = eod_index[j]
|
80 |
-
# Mask attention loss.
|
81 |
-
if reset_attention_mask:
|
82 |
-
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
|
83 |
-
# Reset positions.
|
84 |
-
if reset_position_ids:
|
85 |
-
position_ids[b, (i + 1) :] -= i + 1 - prev_index
|
86 |
-
prev_index = i + 1
|
87 |
-
|
88 |
-
# Convert attention mask to binary:
|
89 |
-
attention_mask = attention_mask < 0.5
|
90 |
-
|
91 |
-
return attention_mask, loss_mask, position_ids
|
92 |
-
|
93 |
-
|
94 |
-
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
|
95 |
-
"""Generate batch from context tokens."""
|
96 |
-
# Move to GPU.
|
97 |
-
tokens = context_tokens.contiguous().to(context_tokens.device)
|
98 |
-
# Get the attention mask and postition ids.
|
99 |
-
attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
|
100 |
-
tokens,
|
101 |
-
eod_id,
|
102 |
-
reset_position_ids=False,
|
103 |
-
reset_attention_mask=False,
|
104 |
-
eod_mask_loss=False,
|
105 |
-
)
|
106 |
-
return tokens, attention_mask, position_ids
|
107 |
-
|
108 |
-
|
109 |
-
def get_stop_words_ids(chat_format, tokenizer):
|
110 |
-
if chat_format == "raw":
|
111 |
-
stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
|
112 |
-
elif chat_format == "chatml":
|
113 |
-
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
|
114 |
-
else:
|
115 |
-
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
116 |
-
return stop_words_ids
|
117 |
-
|
118 |
-
|
119 |
-
def make_context(
|
120 |
-
tokenizer: PreTrainedTokenizer,
|
121 |
-
query: str,
|
122 |
-
history: List[Tuple[str, str]] = None,
|
123 |
-
system: str = "",
|
124 |
-
max_window_size: int = 6144,
|
125 |
-
chat_format: str = "chatml",
|
126 |
-
):
|
127 |
-
if history is None:
|
128 |
-
history = []
|
129 |
-
|
130 |
-
if chat_format == "chatml":
|
131 |
-
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
132 |
-
im_start_tokens = [tokenizer.im_start_id]
|
133 |
-
im_end_tokens = [tokenizer.im_end_id]
|
134 |
-
nl_tokens = tokenizer.encode("\n")
|
135 |
-
|
136 |
-
def _tokenize_str(role, content):
|
137 |
-
return f"{role}\n{content}", tokenizer.encode(
|
138 |
-
role, allowed_special=set()
|
139 |
-
) + nl_tokens + tokenizer.encode(content, allowed_special=set())
|
140 |
-
|
141 |
-
system_text, system_tokens_part = _tokenize_str("system", system)
|
142 |
-
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
143 |
-
|
144 |
-
raw_text = ""
|
145 |
-
context_tokens = []
|
146 |
-
|
147 |
-
for turn_query, turn_response in reversed(history):
|
148 |
-
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
149 |
-
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
150 |
-
response_text, response_tokens_part = _tokenize_str(
|
151 |
-
"assistant", turn_response
|
152 |
-
)
|
153 |
-
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
154 |
-
|
155 |
-
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
156 |
-
prev_chat = (
|
157 |
-
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
158 |
-
)
|
159 |
-
|
160 |
-
current_context_size = (
|
161 |
-
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
162 |
-
)
|
163 |
-
if current_context_size < max_window_size:
|
164 |
-
context_tokens = next_context_tokens + context_tokens
|
165 |
-
raw_text = prev_chat + raw_text
|
166 |
-
else:
|
167 |
-
break
|
168 |
-
|
169 |
-
context_tokens = system_tokens + context_tokens
|
170 |
-
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
171 |
-
context_tokens += (
|
172 |
-
nl_tokens
|
173 |
-
+ im_start_tokens
|
174 |
-
+ _tokenize_str("user", query)[1]
|
175 |
-
+ im_end_tokens
|
176 |
-
+ nl_tokens
|
177 |
-
+ im_start_tokens
|
178 |
-
+ tokenizer.encode("assistant")
|
179 |
-
+ nl_tokens
|
180 |
-
)
|
181 |
-
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
|
182 |
-
|
183 |
-
elif chat_format == "raw":
|
184 |
-
raw_text = query
|
185 |
-
context_tokens = tokenizer.encode(raw_text)
|
186 |
-
else:
|
187 |
-
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
188 |
-
|
189 |
-
return raw_text, context_tokens
|
190 |
-
|
191 |
-
|
192 |
-
def _decode_default(
|
193 |
-
tokens: List[int],
|
194 |
-
*,
|
195 |
-
stop_words: List[str],
|
196 |
-
eod_words: List[str],
|
197 |
-
tokenizer: PreTrainedTokenizer,
|
198 |
-
raw_text_len: int,
|
199 |
-
verbose: bool = False,
|
200 |
-
return_end_reason: bool = False,
|
201 |
-
errors: str='replace',
|
202 |
-
):
|
203 |
-
trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
|
204 |
-
if verbose:
|
205 |
-
print("\nRaw Generate: ", trim_decode_tokens)
|
206 |
-
|
207 |
-
end_reason = f"Gen length {len(tokens)}"
|
208 |
-
for stop_word in stop_words:
|
209 |
-
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
210 |
-
for eod_word in eod_words:
|
211 |
-
if eod_word in trim_decode_tokens:
|
212 |
-
end_reason = f"Gen {eod_word!r}"
|
213 |
-
trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
|
214 |
-
trim_decode_tokens = trim_decode_tokens.strip()
|
215 |
-
if verbose:
|
216 |
-
print("\nEnd Reason:", end_reason)
|
217 |
-
print("\nGenerate: ", trim_decode_tokens)
|
218 |
-
|
219 |
-
if return_end_reason:
|
220 |
-
return trim_decode_tokens, end_reason
|
221 |
-
else:
|
222 |
-
return trim_decode_tokens
|
223 |
-
|
224 |
-
|
225 |
-
def _decode_chatml(
|
226 |
-
tokens: List[int],
|
227 |
-
*,
|
228 |
-
stop_words: List[str],
|
229 |
-
eod_token_ids: List[int],
|
230 |
-
tokenizer: PreTrainedTokenizer,
|
231 |
-
raw_text_len: int,
|
232 |
-
context_length: int,
|
233 |
-
verbose: bool = False,
|
234 |
-
return_end_reason: bool = False,
|
235 |
-
errors: str='replace'
|
236 |
-
):
|
237 |
-
end_reason = f"Gen length {len(tokens)}"
|
238 |
-
eod_token_idx = context_length
|
239 |
-
for eod_token_idx in range(context_length, len(tokens)):
|
240 |
-
if tokens[eod_token_idx] in eod_token_ids:
|
241 |
-
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
|
242 |
-
break
|
243 |
-
|
244 |
-
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
|
245 |
-
if verbose:
|
246 |
-
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
|
247 |
-
print("\nRaw Generate:", trim_decode_tokens)
|
248 |
-
print("\nEnd Reason:", end_reason)
|
249 |
-
for stop_word in stop_words:
|
250 |
-
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
251 |
-
trim_decode_tokens = trim_decode_tokens.strip()
|
252 |
-
if verbose:
|
253 |
-
print("\nGenerate:", trim_decode_tokens)
|
254 |
-
|
255 |
-
if return_end_reason:
|
256 |
-
return trim_decode_tokens, end_reason
|
257 |
-
else:
|
258 |
-
return trim_decode_tokens
|
259 |
-
|
260 |
-
|
261 |
-
def decode_tokens(
|
262 |
-
tokens: Union[torch.LongTensor, TokensType],
|
263 |
-
tokenizer: PreTrainedTokenizer,
|
264 |
-
raw_text_len: int,
|
265 |
-
context_length: int,
|
266 |
-
chat_format: str,
|
267 |
-
verbose: bool = False,
|
268 |
-
return_end_reason: bool = False,
|
269 |
-
errors: str="replace",
|
270 |
-
) -> str:
|
271 |
-
if torch.is_tensor(tokens):
|
272 |
-
tokens = tokens.cpu().numpy().tolist()
|
273 |
-
|
274 |
-
if chat_format == "chatml":
|
275 |
-
return _decode_chatml(
|
276 |
-
tokens,
|
277 |
-
stop_words=[],
|
278 |
-
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
|
279 |
-
tokenizer=tokenizer,
|
280 |
-
raw_text_len=raw_text_len,
|
281 |
-
context_length=context_length,
|
282 |
-
verbose=verbose,
|
283 |
-
return_end_reason=return_end_reason,
|
284 |
-
errors=errors,
|
285 |
-
)
|
286 |
-
elif chat_format == "raw":
|
287 |
-
return _decode_default(
|
288 |
-
tokens,
|
289 |
-
stop_words=["<|endoftext|>"],
|
290 |
-
eod_words=["<|endoftext|>"],
|
291 |
-
tokenizer=tokenizer,
|
292 |
-
raw_text_len=raw_text_len,
|
293 |
-
verbose=verbose,
|
294 |
-
return_end_reason=return_end_reason,
|
295 |
-
errors=errors,
|
296 |
-
)
|
297 |
-
else:
|
298 |
-
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
299 |
-
|
300 |
-
|
301 |
-
class StopWordsLogitsProcessor(LogitsProcessor):
|
302 |
-
"""
|
303 |
-
:class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
|
304 |
-
|
305 |
-
Args:
|
306 |
-
stop_words_ids (:obj:`List[List[int]]`):
|
307 |
-
List of list of token ids of stop ids. In order to get the tokens of the words
|
308 |
-
that should not appear in the generated text, use :obj:`tokenizer(bad_word,
|
309 |
-
add_prefix_space=True).input_ids`.
|
310 |
-
eos_token_id (:obj:`int`):
|
311 |
-
The id of the `end-of-sequence` token.
|
312 |
-
"""
|
313 |
-
|
314 |
-
def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
|
315 |
-
|
316 |
-
if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
|
317 |
-
raise ValueError(
|
318 |
-
f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
|
319 |
-
)
|
320 |
-
if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
|
321 |
-
raise ValueError(
|
322 |
-
f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
|
323 |
-
)
|
324 |
-
if any(
|
325 |
-
any(
|
326 |
-
(not isinstance(token_id, (int, np.integer)) or token_id < 0)
|
327 |
-
for token_id in stop_word_ids
|
328 |
-
)
|
329 |
-
for stop_word_ids in stop_words_ids
|
330 |
-
):
|
331 |
-
raise ValueError(
|
332 |
-
f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
|
333 |
-
)
|
334 |
-
|
335 |
-
self.stop_words_ids = list(
|
336 |
-
filter(
|
337 |
-
lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
|
338 |
-
)
|
339 |
-
)
|
340 |
-
self.eos_token_id = eos_token_id
|
341 |
-
for stop_token_seq in self.stop_words_ids:
|
342 |
-
assert (
|
343 |
-
len(stop_token_seq) > 0
|
344 |
-
), "Stop words token sequences {} cannot have an empty list".format(
|
345 |
-
stop_words_ids
|
346 |
-
)
|
347 |
-
|
348 |
-
def __call__(
|
349 |
-
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
|
350 |
-
) -> torch.FloatTensor:
|
351 |
-
stopped_samples = self._calc_stopped_samples(input_ids)
|
352 |
-
for i, should_stop in enumerate(stopped_samples):
|
353 |
-
if should_stop:
|
354 |
-
scores[i, self.eos_token_id] = float(2**15)
|
355 |
-
return scores
|
356 |
-
|
357 |
-
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
|
358 |
-
if len(tokens) == 0:
|
359 |
-
# if bad word tokens is just one token always ban it
|
360 |
-
return True
|
361 |
-
elif len(tokens) > len(prev_tokens):
|
362 |
-
# if bad word tokens are longer then prev input_ids they can't be equal
|
363 |
-
return False
|
364 |
-
elif prev_tokens[-len(tokens) :].tolist() == tokens:
|
365 |
-
# if tokens match
|
366 |
-
return True
|
367 |
-
else:
|
368 |
-
return False
|
369 |
-
|
370 |
-
def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
|
371 |
-
stopped_samples = []
|
372 |
-
for prev_input_ids_slice in prev_input_ids:
|
373 |
-
match = False
|
374 |
-
for stop_token_seq in self.stop_words_ids:
|
375 |
-
if self._tokens_match(prev_input_ids_slice, stop_token_seq):
|
376 |
-
# if tokens do not match continue
|
377 |
-
match = True
|
378 |
-
break
|
379 |
-
stopped_samples.append(match)
|
380 |
-
|
381 |
-
return stopped_samples
|
382 |
-
|
383 |
-
|
384 |
-
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
|
385 |
-
"""This function has been mostly taken from huggingface conversational
|
386 |
-
ai code at
|
387 |
-
https://medium.com/huggingface/how-to-build-a-state-of-the-art-
|
388 |
-
conversational-ai-with-transfer-learning-2d818ac26313"""
|
389 |
-
|
390 |
-
if top_k > 0:
|
391 |
-
# Remove all tokens with a probability less than the
|
392 |
-
# last token of the top-k
|
393 |
-
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
394 |
-
logits[indices_to_remove] = filter_value
|
395 |
-
|
396 |
-
if top_p > 0.0:
|
397 |
-
# Cconvert to 1D
|
398 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
399 |
-
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
400 |
-
|
401 |
-
# Remove tokens with cumulative probability above the threshold
|
402 |
-
sorted_indices_to_remove = cumulative_probs > top_p
|
403 |
-
# Shift the indices to the right to keep also the first token
|
404 |
-
# above the threshold
|
405 |
-
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
406 |
-
sorted_indices_to_remove[..., 0] = 0
|
407 |
-
for i in range(sorted_indices.size(0)):
|
408 |
-
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
|
409 |
-
logits[i][indices_to_remove] = filter_value
|
410 |
-
|
411 |
-
return logits
|
412 |
-
|
413 |
-
|
414 |
-
def switch(val1, val2, boolean):
|
415 |
-
boolean = boolean.type_as(val1)
|
416 |
-
return (1 - boolean) * val1 + boolean * val2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0060000_hf/special_tokens_map.json
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": "<|extra_203|>",
|
3 |
-
"eos_token": "<|extra_204|>",
|
4 |
-
"unk_token": "<|endoftext|>",
|
5 |
-
"pad_token": "<|endoftext|>"
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0060000_hf/tokenization_qwen.py
DELETED
@@ -1,276 +0,0 @@
|
|
1 |
-
# Copyright (c) Alibaba Cloud.
|
2 |
-
#
|
3 |
-
# This source code is licensed under the license found in the
|
4 |
-
# LICENSE file in the root directory of this source tree.
|
5 |
-
|
6 |
-
"""Tokenization classes for QWen."""
|
7 |
-
|
8 |
-
import base64
|
9 |
-
import logging
|
10 |
-
import os
|
11 |
-
import unicodedata
|
12 |
-
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
-
|
14 |
-
import tiktoken
|
15 |
-
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
-
|
17 |
-
logger = logging.getLogger(__name__)
|
18 |
-
|
19 |
-
|
20 |
-
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
-
|
22 |
-
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
-
ENDOFTEXT = "<|endoftext|>"
|
24 |
-
IMSTART = "<|im_start|>"
|
25 |
-
IMEND = "<|im_end|>"
|
26 |
-
# as the default behavior is changed to allow special tokens in
|
27 |
-
# regular texts, the surface forms of special tokens need to be
|
28 |
-
# as different as possible to minimize the impact
|
29 |
-
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
-
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
-
SPECIAL_START_ID = 151643
|
32 |
-
SPECIAL_TOKENS = tuple(
|
33 |
-
enumerate(
|
34 |
-
(
|
35 |
-
(
|
36 |
-
ENDOFTEXT,
|
37 |
-
IMSTART,
|
38 |
-
IMEND,
|
39 |
-
)
|
40 |
-
+ EXTRAS
|
41 |
-
),
|
42 |
-
start=SPECIAL_START_ID,
|
43 |
-
)
|
44 |
-
)
|
45 |
-
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
-
|
47 |
-
|
48 |
-
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
-
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
-
contents = f.read()
|
51 |
-
return {
|
52 |
-
base64.b64decode(token): int(rank)
|
53 |
-
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
-
}
|
55 |
-
|
56 |
-
|
57 |
-
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
-
"""QWen tokenizer."""
|
59 |
-
|
60 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
-
|
62 |
-
def __init__(
|
63 |
-
self,
|
64 |
-
vocab_file,
|
65 |
-
errors="replace",
|
66 |
-
extra_vocab_file=None,
|
67 |
-
**kwargs,
|
68 |
-
):
|
69 |
-
super().__init__(**kwargs)
|
70 |
-
|
71 |
-
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
-
# use ignore if you are in streaming inference
|
73 |
-
self.errors = errors
|
74 |
-
|
75 |
-
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
-
self.special_tokens = {
|
77 |
-
token: index
|
78 |
-
for index, token in SPECIAL_TOKENS
|
79 |
-
}
|
80 |
-
|
81 |
-
# try load extra vocab from file
|
82 |
-
if extra_vocab_file is not None:
|
83 |
-
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
-
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
-
for token, index in extra_mergeable_ranks.items():
|
86 |
-
if token in self.mergeable_ranks:
|
87 |
-
logger.info(f"extra token {token} exists, skipping")
|
88 |
-
continue
|
89 |
-
if index in used_ids:
|
90 |
-
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
-
continue
|
92 |
-
self.mergeable_ranks[token] = index
|
93 |
-
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
-
|
95 |
-
enc = tiktoken.Encoding(
|
96 |
-
"Qwen",
|
97 |
-
pat_str=PAT_STR,
|
98 |
-
mergeable_ranks=self.mergeable_ranks,
|
99 |
-
special_tokens=self.special_tokens,
|
100 |
-
)
|
101 |
-
assert (
|
102 |
-
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
-
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
-
|
105 |
-
self.decoder = {
|
106 |
-
v: k for k, v in self.mergeable_ranks.items()
|
107 |
-
} # type: dict[int, bytes|str]
|
108 |
-
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
-
|
110 |
-
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
-
|
112 |
-
self.eod_id = self.tokenizer.eot_token
|
113 |
-
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
-
self.im_end_id = self.special_tokens[IMEND]
|
115 |
-
|
116 |
-
def __getstate__(self):
|
117 |
-
# for pickle lovers
|
118 |
-
state = self.__dict__.copy()
|
119 |
-
del state["tokenizer"]
|
120 |
-
return state
|
121 |
-
|
122 |
-
def __setstate__(self, state):
|
123 |
-
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
-
self.__dict__.update(state)
|
125 |
-
enc = tiktoken.Encoding(
|
126 |
-
"Qwen",
|
127 |
-
pat_str=PAT_STR,
|
128 |
-
mergeable_ranks=self.mergeable_ranks,
|
129 |
-
special_tokens=self.special_tokens,
|
130 |
-
)
|
131 |
-
self.tokenizer = enc
|
132 |
-
|
133 |
-
def __len__(self) -> int:
|
134 |
-
return self.tokenizer.n_vocab
|
135 |
-
|
136 |
-
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
-
return self.mergeable_ranks
|
138 |
-
|
139 |
-
def convert_tokens_to_ids(
|
140 |
-
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
-
) -> List[int]:
|
142 |
-
ids = []
|
143 |
-
if isinstance(tokens, (str, bytes)):
|
144 |
-
if tokens in self.special_tokens:
|
145 |
-
return self.special_tokens[tokens]
|
146 |
-
else:
|
147 |
-
return self.mergeable_ranks.get(tokens)
|
148 |
-
for token in tokens:
|
149 |
-
if token in self.special_tokens:
|
150 |
-
ids.append(self.special_tokens[token])
|
151 |
-
else:
|
152 |
-
ids.append(self.mergeable_ranks.get(token))
|
153 |
-
return ids
|
154 |
-
|
155 |
-
def _add_tokens(
|
156 |
-
self,
|
157 |
-
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
-
special_tokens: bool = False,
|
159 |
-
) -> int:
|
160 |
-
if not special_tokens and new_tokens:
|
161 |
-
raise ValueError("Adding regular tokens is not supported")
|
162 |
-
for token in new_tokens:
|
163 |
-
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
-
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
-
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
-
return 0
|
167 |
-
|
168 |
-
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
-
"""
|
170 |
-
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
-
|
172 |
-
Returns:
|
173 |
-
`Tuple(str)`: Paths to the files saved.
|
174 |
-
"""
|
175 |
-
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
-
with open(file_path, "w", encoding="utf8") as w:
|
177 |
-
for k, v in self.mergeable_ranks.items():
|
178 |
-
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
-
w.write(line)
|
180 |
-
return (file_path,)
|
181 |
-
|
182 |
-
def tokenize(
|
183 |
-
self,
|
184 |
-
text: str,
|
185 |
-
allowed_special: Union[Set, str] = "all",
|
186 |
-
disallowed_special: Union[Collection, str] = (),
|
187 |
-
**kwargs,
|
188 |
-
) -> List[Union[bytes, str]]:
|
189 |
-
"""
|
190 |
-
Converts a string in a sequence of tokens.
|
191 |
-
|
192 |
-
Args:
|
193 |
-
text (`str`):
|
194 |
-
The sequence to be encoded.
|
195 |
-
allowed_special (`Literal["all"]` or `set`):
|
196 |
-
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
-
Default to "all".
|
198 |
-
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
-
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
-
Default to an empty tuple.
|
201 |
-
|
202 |
-
kwargs (additional keyword arguments, *optional*):
|
203 |
-
Will be passed to the underlying model specific encode method.
|
204 |
-
|
205 |
-
Returns:
|
206 |
-
`List[bytes|str]`: The list of tokens.
|
207 |
-
"""
|
208 |
-
tokens = []
|
209 |
-
text = unicodedata.normalize("NFC", text)
|
210 |
-
|
211 |
-
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
-
for t in self.tokenizer.encode(
|
213 |
-
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
-
):
|
215 |
-
tokens.append(self.decoder[t])
|
216 |
-
return tokens
|
217 |
-
|
218 |
-
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
-
"""
|
220 |
-
Converts a sequence of tokens in a single string.
|
221 |
-
"""
|
222 |
-
text = ""
|
223 |
-
temp = b""
|
224 |
-
for t in tokens:
|
225 |
-
if isinstance(t, str):
|
226 |
-
if temp:
|
227 |
-
text += temp.decode("utf-8", errors=self.errors)
|
228 |
-
temp = b""
|
229 |
-
text += t
|
230 |
-
elif isinstance(t, bytes):
|
231 |
-
temp += t
|
232 |
-
else:
|
233 |
-
raise TypeError("token should only be of type types or str")
|
234 |
-
if temp:
|
235 |
-
text += temp.decode("utf-8", errors=self.errors)
|
236 |
-
return text
|
237 |
-
|
238 |
-
@property
|
239 |
-
def vocab_size(self):
|
240 |
-
return self.tokenizer.n_vocab
|
241 |
-
|
242 |
-
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
-
"""Converts an id to a token, special tokens included"""
|
244 |
-
if index in self.decoder:
|
245 |
-
return self.decoder[index]
|
246 |
-
raise ValueError("unknown ids")
|
247 |
-
|
248 |
-
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
-
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
-
if token in self.special_tokens:
|
251 |
-
return self.special_tokens[token]
|
252 |
-
if token in self.mergeable_ranks:
|
253 |
-
return self.mergeable_ranks[token]
|
254 |
-
raise ValueError("unknown token")
|
255 |
-
|
256 |
-
def _tokenize(self, text: str, **kwargs):
|
257 |
-
"""
|
258 |
-
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
-
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
-
|
261 |
-
Do NOT take care of added tokens.
|
262 |
-
"""
|
263 |
-
raise NotImplementedError
|
264 |
-
|
265 |
-
def _decode(
|
266 |
-
self,
|
267 |
-
token_ids: Union[int, List[int]],
|
268 |
-
skip_special_tokens: bool = False,
|
269 |
-
errors: str = None,
|
270 |
-
**kwargs,
|
271 |
-
) -> str:
|
272 |
-
if isinstance(token_ids, int):
|
273 |
-
token_ids = [token_ids]
|
274 |
-
if skip_special_tokens:
|
275 |
-
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
-
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0060000_hf/tokenizer_config.json
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"model_max_length": 8192,
|
3 |
-
"tokenizer_class": "QWenTokenizer",
|
4 |
-
"auto_map": {
|
5 |
-
"AutoTokenizer": [
|
6 |
-
"tokenization_qwen.QWenTokenizer",
|
7 |
-
null
|
8 |
-
]
|
9 |
-
},
|
10 |
-
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
|
11 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0070000_hf/config.json
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"architectures": [
|
3 |
-
"MistralForCausalLM"
|
4 |
-
],
|
5 |
-
"attention_bias": false,
|
6 |
-
"attention_dropout": 0.0,
|
7 |
-
"bos_token_id": 151849,
|
8 |
-
"eos_token_id": 151850,
|
9 |
-
"head_dim": 64,
|
10 |
-
"hidden_act": "silu",
|
11 |
-
"hidden_size": 576,
|
12 |
-
"initializer_range": 0.02,
|
13 |
-
"intermediate_size": 1536,
|
14 |
-
"max_position_embeddings": 8192,
|
15 |
-
"model_type": "mistral",
|
16 |
-
"num_attention_heads": 9,
|
17 |
-
"num_hidden_layers": 30,
|
18 |
-
"num_key_value_heads": 3,
|
19 |
-
"rms_norm_eps": 1e-05,
|
20 |
-
"rope_theta": 10000,
|
21 |
-
"sliding_window": 8192,
|
22 |
-
"tie_word_embeddings": true,
|
23 |
-
"torch_dtype": "bfloat16",
|
24 |
-
"transformers_version": "4.44.2",
|
25 |
-
"use_cache": true,
|
26 |
-
"vocab_size": 151851
|
27 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0070000_hf/generation_config.json
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_from_model_config": true,
|
3 |
-
"bos_token_id": 151849,
|
4 |
-
"eos_token_id": 151850,
|
5 |
-
"transformers_version": "4.44.2"
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0070000_hf/model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:2bcb3c3a80c6c3f4fdb486cc353a684f120d3eba67ac4571fb5a511f3f11b1f4
|
3 |
-
size 562302352
|
|
|
|
|
|
|
|
cooldown/iter_0070000_hf/qwen.tiktoken
DELETED
The diff for this file is too large to render.
See raw diff
|
|
cooldown/iter_0070000_hf/qwen_generation_utils.py
DELETED
@@ -1,416 +0,0 @@
|
|
1 |
-
# Copyright (c) Alibaba Cloud.
|
2 |
-
#
|
3 |
-
# This source code is licensed under the license found in the
|
4 |
-
# LICENSE file in the root directory of this source tree.
|
5 |
-
|
6 |
-
"""Generation support."""
|
7 |
-
|
8 |
-
from typing import Tuple, List, Union, Iterable
|
9 |
-
|
10 |
-
import numpy as np
|
11 |
-
import torch
|
12 |
-
import torch.nn.functional as F
|
13 |
-
from transformers import PreTrainedTokenizer
|
14 |
-
from transformers import logging
|
15 |
-
from transformers.generation import LogitsProcessor
|
16 |
-
|
17 |
-
logger = logging.get_logger(__name__)
|
18 |
-
|
19 |
-
# Types.
|
20 |
-
HistoryType = List[Tuple[str, str]]
|
21 |
-
TokensType = List[int]
|
22 |
-
BatchTokensType = List[List[int]]
|
23 |
-
|
24 |
-
|
25 |
-
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
|
26 |
-
for tokens in batch:
|
27 |
-
context_length = len(tokens)
|
28 |
-
if context_length < seq_length:
|
29 |
-
tokens.extend([pad_id] * (seq_length - context_length))
|
30 |
-
return batch
|
31 |
-
|
32 |
-
|
33 |
-
def get_ltor_masks_and_position_ids(
|
34 |
-
data,
|
35 |
-
eod_token,
|
36 |
-
reset_position_ids,
|
37 |
-
reset_attention_mask,
|
38 |
-
eod_mask_loss,
|
39 |
-
):
|
40 |
-
"""Build masks and position id for left to right model."""
|
41 |
-
|
42 |
-
# Extract batch size and sequence length.
|
43 |
-
micro_batch_size, seq_length = data.size()
|
44 |
-
|
45 |
-
# Attention mask (lower triangular).
|
46 |
-
if reset_attention_mask:
|
47 |
-
att_mask_batch = micro_batch_size
|
48 |
-
else:
|
49 |
-
att_mask_batch = 1
|
50 |
-
attention_mask = torch.tril(
|
51 |
-
torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
|
52 |
-
).view(att_mask_batch, 1, seq_length, seq_length)
|
53 |
-
|
54 |
-
# Loss mask.
|
55 |
-
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
|
56 |
-
if eod_mask_loss:
|
57 |
-
loss_mask[data == eod_token] = 0.0
|
58 |
-
|
59 |
-
# Position ids.
|
60 |
-
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
|
61 |
-
position_ids = position_ids.unsqueeze(0).expand_as(data)
|
62 |
-
# We need to clone as the ids will be modifed based on batch index.
|
63 |
-
if reset_position_ids:
|
64 |
-
position_ids = position_ids.clone()
|
65 |
-
|
66 |
-
if reset_position_ids or reset_attention_mask:
|
67 |
-
# Loop through the batches:
|
68 |
-
for b in range(micro_batch_size):
|
69 |
-
|
70 |
-
# Find indecies where EOD token is.
|
71 |
-
eod_index = position_ids[b, data[b] == eod_token]
|
72 |
-
# Detach indecies from positions if going to modify positions.
|
73 |
-
if reset_position_ids:
|
74 |
-
eod_index = eod_index.clone()
|
75 |
-
|
76 |
-
# Loop through EOD indecies:
|
77 |
-
prev_index = 0
|
78 |
-
for j in range(eod_index.size()[0]):
|
79 |
-
i = eod_index[j]
|
80 |
-
# Mask attention loss.
|
81 |
-
if reset_attention_mask:
|
82 |
-
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
|
83 |
-
# Reset positions.
|
84 |
-
if reset_position_ids:
|
85 |
-
position_ids[b, (i + 1) :] -= i + 1 - prev_index
|
86 |
-
prev_index = i + 1
|
87 |
-
|
88 |
-
# Convert attention mask to binary:
|
89 |
-
attention_mask = attention_mask < 0.5
|
90 |
-
|
91 |
-
return attention_mask, loss_mask, position_ids
|
92 |
-
|
93 |
-
|
94 |
-
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
|
95 |
-
"""Generate batch from context tokens."""
|
96 |
-
# Move to GPU.
|
97 |
-
tokens = context_tokens.contiguous().to(context_tokens.device)
|
98 |
-
# Get the attention mask and postition ids.
|
99 |
-
attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
|
100 |
-
tokens,
|
101 |
-
eod_id,
|
102 |
-
reset_position_ids=False,
|
103 |
-
reset_attention_mask=False,
|
104 |
-
eod_mask_loss=False,
|
105 |
-
)
|
106 |
-
return tokens, attention_mask, position_ids
|
107 |
-
|
108 |
-
|
109 |
-
def get_stop_words_ids(chat_format, tokenizer):
|
110 |
-
if chat_format == "raw":
|
111 |
-
stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
|
112 |
-
elif chat_format == "chatml":
|
113 |
-
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
|
114 |
-
else:
|
115 |
-
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
116 |
-
return stop_words_ids
|
117 |
-
|
118 |
-
|
119 |
-
def make_context(
|
120 |
-
tokenizer: PreTrainedTokenizer,
|
121 |
-
query: str,
|
122 |
-
history: List[Tuple[str, str]] = None,
|
123 |
-
system: str = "",
|
124 |
-
max_window_size: int = 6144,
|
125 |
-
chat_format: str = "chatml",
|
126 |
-
):
|
127 |
-
if history is None:
|
128 |
-
history = []
|
129 |
-
|
130 |
-
if chat_format == "chatml":
|
131 |
-
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
132 |
-
im_start_tokens = [tokenizer.im_start_id]
|
133 |
-
im_end_tokens = [tokenizer.im_end_id]
|
134 |
-
nl_tokens = tokenizer.encode("\n")
|
135 |
-
|
136 |
-
def _tokenize_str(role, content):
|
137 |
-
return f"{role}\n{content}", tokenizer.encode(
|
138 |
-
role, allowed_special=set()
|
139 |
-
) + nl_tokens + tokenizer.encode(content, allowed_special=set())
|
140 |
-
|
141 |
-
system_text, system_tokens_part = _tokenize_str("system", system)
|
142 |
-
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
143 |
-
|
144 |
-
raw_text = ""
|
145 |
-
context_tokens = []
|
146 |
-
|
147 |
-
for turn_query, turn_response in reversed(history):
|
148 |
-
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
149 |
-
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
150 |
-
response_text, response_tokens_part = _tokenize_str(
|
151 |
-
"assistant", turn_response
|
152 |
-
)
|
153 |
-
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
154 |
-
|
155 |
-
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
156 |
-
prev_chat = (
|
157 |
-
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
158 |
-
)
|
159 |
-
|
160 |
-
current_context_size = (
|
161 |
-
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
162 |
-
)
|
163 |
-
if current_context_size < max_window_size:
|
164 |
-
context_tokens = next_context_tokens + context_tokens
|
165 |
-
raw_text = prev_chat + raw_text
|
166 |
-
else:
|
167 |
-
break
|
168 |
-
|
169 |
-
context_tokens = system_tokens + context_tokens
|
170 |
-
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
171 |
-
context_tokens += (
|
172 |
-
nl_tokens
|
173 |
-
+ im_start_tokens
|
174 |
-
+ _tokenize_str("user", query)[1]
|
175 |
-
+ im_end_tokens
|
176 |
-
+ nl_tokens
|
177 |
-
+ im_start_tokens
|
178 |
-
+ tokenizer.encode("assistant")
|
179 |
-
+ nl_tokens
|
180 |
-
)
|
181 |
-
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
|
182 |
-
|
183 |
-
elif chat_format == "raw":
|
184 |
-
raw_text = query
|
185 |
-
context_tokens = tokenizer.encode(raw_text)
|
186 |
-
else:
|
187 |
-
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
188 |
-
|
189 |
-
return raw_text, context_tokens
|
190 |
-
|
191 |
-
|
192 |
-
def _decode_default(
|
193 |
-
tokens: List[int],
|
194 |
-
*,
|
195 |
-
stop_words: List[str],
|
196 |
-
eod_words: List[str],
|
197 |
-
tokenizer: PreTrainedTokenizer,
|
198 |
-
raw_text_len: int,
|
199 |
-
verbose: bool = False,
|
200 |
-
return_end_reason: bool = False,
|
201 |
-
errors: str='replace',
|
202 |
-
):
|
203 |
-
trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
|
204 |
-
if verbose:
|
205 |
-
print("\nRaw Generate: ", trim_decode_tokens)
|
206 |
-
|
207 |
-
end_reason = f"Gen length {len(tokens)}"
|
208 |
-
for stop_word in stop_words:
|
209 |
-
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
210 |
-
for eod_word in eod_words:
|
211 |
-
if eod_word in trim_decode_tokens:
|
212 |
-
end_reason = f"Gen {eod_word!r}"
|
213 |
-
trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
|
214 |
-
trim_decode_tokens = trim_decode_tokens.strip()
|
215 |
-
if verbose:
|
216 |
-
print("\nEnd Reason:", end_reason)
|
217 |
-
print("\nGenerate: ", trim_decode_tokens)
|
218 |
-
|
219 |
-
if return_end_reason:
|
220 |
-
return trim_decode_tokens, end_reason
|
221 |
-
else:
|
222 |
-
return trim_decode_tokens
|
223 |
-
|
224 |
-
|
225 |
-
def _decode_chatml(
|
226 |
-
tokens: List[int],
|
227 |
-
*,
|
228 |
-
stop_words: List[str],
|
229 |
-
eod_token_ids: List[int],
|
230 |
-
tokenizer: PreTrainedTokenizer,
|
231 |
-
raw_text_len: int,
|
232 |
-
context_length: int,
|
233 |
-
verbose: bool = False,
|
234 |
-
return_end_reason: bool = False,
|
235 |
-
errors: str='replace'
|
236 |
-
):
|
237 |
-
end_reason = f"Gen length {len(tokens)}"
|
238 |
-
eod_token_idx = context_length
|
239 |
-
for eod_token_idx in range(context_length, len(tokens)):
|
240 |
-
if tokens[eod_token_idx] in eod_token_ids:
|
241 |
-
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
|
242 |
-
break
|
243 |
-
|
244 |
-
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
|
245 |
-
if verbose:
|
246 |
-
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
|
247 |
-
print("\nRaw Generate:", trim_decode_tokens)
|
248 |
-
print("\nEnd Reason:", end_reason)
|
249 |
-
for stop_word in stop_words:
|
250 |
-
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
251 |
-
trim_decode_tokens = trim_decode_tokens.strip()
|
252 |
-
if verbose:
|
253 |
-
print("\nGenerate:", trim_decode_tokens)
|
254 |
-
|
255 |
-
if return_end_reason:
|
256 |
-
return trim_decode_tokens, end_reason
|
257 |
-
else:
|
258 |
-
return trim_decode_tokens
|
259 |
-
|
260 |
-
|
261 |
-
def decode_tokens(
|
262 |
-
tokens: Union[torch.LongTensor, TokensType],
|
263 |
-
tokenizer: PreTrainedTokenizer,
|
264 |
-
raw_text_len: int,
|
265 |
-
context_length: int,
|
266 |
-
chat_format: str,
|
267 |
-
verbose: bool = False,
|
268 |
-
return_end_reason: bool = False,
|
269 |
-
errors: str="replace",
|
270 |
-
) -> str:
|
271 |
-
if torch.is_tensor(tokens):
|
272 |
-
tokens = tokens.cpu().numpy().tolist()
|
273 |
-
|
274 |
-
if chat_format == "chatml":
|
275 |
-
return _decode_chatml(
|
276 |
-
tokens,
|
277 |
-
stop_words=[],
|
278 |
-
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
|
279 |
-
tokenizer=tokenizer,
|
280 |
-
raw_text_len=raw_text_len,
|
281 |
-
context_length=context_length,
|
282 |
-
verbose=verbose,
|
283 |
-
return_end_reason=return_end_reason,
|
284 |
-
errors=errors,
|
285 |
-
)
|
286 |
-
elif chat_format == "raw":
|
287 |
-
return _decode_default(
|
288 |
-
tokens,
|
289 |
-
stop_words=["<|endoftext|>"],
|
290 |
-
eod_words=["<|endoftext|>"],
|
291 |
-
tokenizer=tokenizer,
|
292 |
-
raw_text_len=raw_text_len,
|
293 |
-
verbose=verbose,
|
294 |
-
return_end_reason=return_end_reason,
|
295 |
-
errors=errors,
|
296 |
-
)
|
297 |
-
else:
|
298 |
-
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
299 |
-
|
300 |
-
|
301 |
-
class StopWordsLogitsProcessor(LogitsProcessor):
|
302 |
-
"""
|
303 |
-
:class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
|
304 |
-
|
305 |
-
Args:
|
306 |
-
stop_words_ids (:obj:`List[List[int]]`):
|
307 |
-
List of list of token ids of stop ids. In order to get the tokens of the words
|
308 |
-
that should not appear in the generated text, use :obj:`tokenizer(bad_word,
|
309 |
-
add_prefix_space=True).input_ids`.
|
310 |
-
eos_token_id (:obj:`int`):
|
311 |
-
The id of the `end-of-sequence` token.
|
312 |
-
"""
|
313 |
-
|
314 |
-
def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
|
315 |
-
|
316 |
-
if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
|
317 |
-
raise ValueError(
|
318 |
-
f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
|
319 |
-
)
|
320 |
-
if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
|
321 |
-
raise ValueError(
|
322 |
-
f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
|
323 |
-
)
|
324 |
-
if any(
|
325 |
-
any(
|
326 |
-
(not isinstance(token_id, (int, np.integer)) or token_id < 0)
|
327 |
-
for token_id in stop_word_ids
|
328 |
-
)
|
329 |
-
for stop_word_ids in stop_words_ids
|
330 |
-
):
|
331 |
-
raise ValueError(
|
332 |
-
f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
|
333 |
-
)
|
334 |
-
|
335 |
-
self.stop_words_ids = list(
|
336 |
-
filter(
|
337 |
-
lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
|
338 |
-
)
|
339 |
-
)
|
340 |
-
self.eos_token_id = eos_token_id
|
341 |
-
for stop_token_seq in self.stop_words_ids:
|
342 |
-
assert (
|
343 |
-
len(stop_token_seq) > 0
|
344 |
-
), "Stop words token sequences {} cannot have an empty list".format(
|
345 |
-
stop_words_ids
|
346 |
-
)
|
347 |
-
|
348 |
-
def __call__(
|
349 |
-
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
|
350 |
-
) -> torch.FloatTensor:
|
351 |
-
stopped_samples = self._calc_stopped_samples(input_ids)
|
352 |
-
for i, should_stop in enumerate(stopped_samples):
|
353 |
-
if should_stop:
|
354 |
-
scores[i, self.eos_token_id] = float(2**15)
|
355 |
-
return scores
|
356 |
-
|
357 |
-
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
|
358 |
-
if len(tokens) == 0:
|
359 |
-
# if bad word tokens is just one token always ban it
|
360 |
-
return True
|
361 |
-
elif len(tokens) > len(prev_tokens):
|
362 |
-
# if bad word tokens are longer then prev input_ids they can't be equal
|
363 |
-
return False
|
364 |
-
elif prev_tokens[-len(tokens) :].tolist() == tokens:
|
365 |
-
# if tokens match
|
366 |
-
return True
|
367 |
-
else:
|
368 |
-
return False
|
369 |
-
|
370 |
-
def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
|
371 |
-
stopped_samples = []
|
372 |
-
for prev_input_ids_slice in prev_input_ids:
|
373 |
-
match = False
|
374 |
-
for stop_token_seq in self.stop_words_ids:
|
375 |
-
if self._tokens_match(prev_input_ids_slice, stop_token_seq):
|
376 |
-
# if tokens do not match continue
|
377 |
-
match = True
|
378 |
-
break
|
379 |
-
stopped_samples.append(match)
|
380 |
-
|
381 |
-
return stopped_samples
|
382 |
-
|
383 |
-
|
384 |
-
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
|
385 |
-
"""This function has been mostly taken from huggingface conversational
|
386 |
-
ai code at
|
387 |
-
https://medium.com/huggingface/how-to-build-a-state-of-the-art-
|
388 |
-
conversational-ai-with-transfer-learning-2d818ac26313"""
|
389 |
-
|
390 |
-
if top_k > 0:
|
391 |
-
# Remove all tokens with a probability less than the
|
392 |
-
# last token of the top-k
|
393 |
-
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
394 |
-
logits[indices_to_remove] = filter_value
|
395 |
-
|
396 |
-
if top_p > 0.0:
|
397 |
-
# Cconvert to 1D
|
398 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
399 |
-
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
400 |
-
|
401 |
-
# Remove tokens with cumulative probability above the threshold
|
402 |
-
sorted_indices_to_remove = cumulative_probs > top_p
|
403 |
-
# Shift the indices to the right to keep also the first token
|
404 |
-
# above the threshold
|
405 |
-
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
406 |
-
sorted_indices_to_remove[..., 0] = 0
|
407 |
-
for i in range(sorted_indices.size(0)):
|
408 |
-
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
|
409 |
-
logits[i][indices_to_remove] = filter_value
|
410 |
-
|
411 |
-
return logits
|
412 |
-
|
413 |
-
|
414 |
-
def switch(val1, val2, boolean):
|
415 |
-
boolean = boolean.type_as(val1)
|
416 |
-
return (1 - boolean) * val1 + boolean * val2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0070000_hf/special_tokens_map.json
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": "<|extra_203|>",
|
3 |
-
"eos_token": "<|extra_204|>",
|
4 |
-
"unk_token": "<|endoftext|>",
|
5 |
-
"pad_token": "<|endoftext|>"
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0070000_hf/tokenization_qwen.py
DELETED
@@ -1,276 +0,0 @@
|
|
1 |
-
# Copyright (c) Alibaba Cloud.
|
2 |
-
#
|
3 |
-
# This source code is licensed under the license found in the
|
4 |
-
# LICENSE file in the root directory of this source tree.
|
5 |
-
|
6 |
-
"""Tokenization classes for QWen."""
|
7 |
-
|
8 |
-
import base64
|
9 |
-
import logging
|
10 |
-
import os
|
11 |
-
import unicodedata
|
12 |
-
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
-
|
14 |
-
import tiktoken
|
15 |
-
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
-
|
17 |
-
logger = logging.getLogger(__name__)
|
18 |
-
|
19 |
-
|
20 |
-
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
-
|
22 |
-
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
-
ENDOFTEXT = "<|endoftext|>"
|
24 |
-
IMSTART = "<|im_start|>"
|
25 |
-
IMEND = "<|im_end|>"
|
26 |
-
# as the default behavior is changed to allow special tokens in
|
27 |
-
# regular texts, the surface forms of special tokens need to be
|
28 |
-
# as different as possible to minimize the impact
|
29 |
-
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
-
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
-
SPECIAL_START_ID = 151643
|
32 |
-
SPECIAL_TOKENS = tuple(
|
33 |
-
enumerate(
|
34 |
-
(
|
35 |
-
(
|
36 |
-
ENDOFTEXT,
|
37 |
-
IMSTART,
|
38 |
-
IMEND,
|
39 |
-
)
|
40 |
-
+ EXTRAS
|
41 |
-
),
|
42 |
-
start=SPECIAL_START_ID,
|
43 |
-
)
|
44 |
-
)
|
45 |
-
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
-
|
47 |
-
|
48 |
-
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
-
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
-
contents = f.read()
|
51 |
-
return {
|
52 |
-
base64.b64decode(token): int(rank)
|
53 |
-
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
-
}
|
55 |
-
|
56 |
-
|
57 |
-
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
-
"""QWen tokenizer."""
|
59 |
-
|
60 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
-
|
62 |
-
def __init__(
|
63 |
-
self,
|
64 |
-
vocab_file,
|
65 |
-
errors="replace",
|
66 |
-
extra_vocab_file=None,
|
67 |
-
**kwargs,
|
68 |
-
):
|
69 |
-
super().__init__(**kwargs)
|
70 |
-
|
71 |
-
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
-
# use ignore if you are in streaming inference
|
73 |
-
self.errors = errors
|
74 |
-
|
75 |
-
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
-
self.special_tokens = {
|
77 |
-
token: index
|
78 |
-
for index, token in SPECIAL_TOKENS
|
79 |
-
}
|
80 |
-
|
81 |
-
# try load extra vocab from file
|
82 |
-
if extra_vocab_file is not None:
|
83 |
-
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
-
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
-
for token, index in extra_mergeable_ranks.items():
|
86 |
-
if token in self.mergeable_ranks:
|
87 |
-
logger.info(f"extra token {token} exists, skipping")
|
88 |
-
continue
|
89 |
-
if index in used_ids:
|
90 |
-
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
-
continue
|
92 |
-
self.mergeable_ranks[token] = index
|
93 |
-
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
-
|
95 |
-
enc = tiktoken.Encoding(
|
96 |
-
"Qwen",
|
97 |
-
pat_str=PAT_STR,
|
98 |
-
mergeable_ranks=self.mergeable_ranks,
|
99 |
-
special_tokens=self.special_tokens,
|
100 |
-
)
|
101 |
-
assert (
|
102 |
-
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
-
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
-
|
105 |
-
self.decoder = {
|
106 |
-
v: k for k, v in self.mergeable_ranks.items()
|
107 |
-
} # type: dict[int, bytes|str]
|
108 |
-
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
-
|
110 |
-
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
-
|
112 |
-
self.eod_id = self.tokenizer.eot_token
|
113 |
-
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
-
self.im_end_id = self.special_tokens[IMEND]
|
115 |
-
|
116 |
-
def __getstate__(self):
|
117 |
-
# for pickle lovers
|
118 |
-
state = self.__dict__.copy()
|
119 |
-
del state["tokenizer"]
|
120 |
-
return state
|
121 |
-
|
122 |
-
def __setstate__(self, state):
|
123 |
-
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
-
self.__dict__.update(state)
|
125 |
-
enc = tiktoken.Encoding(
|
126 |
-
"Qwen",
|
127 |
-
pat_str=PAT_STR,
|
128 |
-
mergeable_ranks=self.mergeable_ranks,
|
129 |
-
special_tokens=self.special_tokens,
|
130 |
-
)
|
131 |
-
self.tokenizer = enc
|
132 |
-
|
133 |
-
def __len__(self) -> int:
|
134 |
-
return self.tokenizer.n_vocab
|
135 |
-
|
136 |
-
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
-
return self.mergeable_ranks
|
138 |
-
|
139 |
-
def convert_tokens_to_ids(
|
140 |
-
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
-
) -> List[int]:
|
142 |
-
ids = []
|
143 |
-
if isinstance(tokens, (str, bytes)):
|
144 |
-
if tokens in self.special_tokens:
|
145 |
-
return self.special_tokens[tokens]
|
146 |
-
else:
|
147 |
-
return self.mergeable_ranks.get(tokens)
|
148 |
-
for token in tokens:
|
149 |
-
if token in self.special_tokens:
|
150 |
-
ids.append(self.special_tokens[token])
|
151 |
-
else:
|
152 |
-
ids.append(self.mergeable_ranks.get(token))
|
153 |
-
return ids
|
154 |
-
|
155 |
-
def _add_tokens(
|
156 |
-
self,
|
157 |
-
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
-
special_tokens: bool = False,
|
159 |
-
) -> int:
|
160 |
-
if not special_tokens and new_tokens:
|
161 |
-
raise ValueError("Adding regular tokens is not supported")
|
162 |
-
for token in new_tokens:
|
163 |
-
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
-
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
-
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
-
return 0
|
167 |
-
|
168 |
-
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
-
"""
|
170 |
-
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
-
|
172 |
-
Returns:
|
173 |
-
`Tuple(str)`: Paths to the files saved.
|
174 |
-
"""
|
175 |
-
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
-
with open(file_path, "w", encoding="utf8") as w:
|
177 |
-
for k, v in self.mergeable_ranks.items():
|
178 |
-
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
-
w.write(line)
|
180 |
-
return (file_path,)
|
181 |
-
|
182 |
-
def tokenize(
|
183 |
-
self,
|
184 |
-
text: str,
|
185 |
-
allowed_special: Union[Set, str] = "all",
|
186 |
-
disallowed_special: Union[Collection, str] = (),
|
187 |
-
**kwargs,
|
188 |
-
) -> List[Union[bytes, str]]:
|
189 |
-
"""
|
190 |
-
Converts a string in a sequence of tokens.
|
191 |
-
|
192 |
-
Args:
|
193 |
-
text (`str`):
|
194 |
-
The sequence to be encoded.
|
195 |
-
allowed_special (`Literal["all"]` or `set`):
|
196 |
-
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
-
Default to "all".
|
198 |
-
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
-
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
-
Default to an empty tuple.
|
201 |
-
|
202 |
-
kwargs (additional keyword arguments, *optional*):
|
203 |
-
Will be passed to the underlying model specific encode method.
|
204 |
-
|
205 |
-
Returns:
|
206 |
-
`List[bytes|str]`: The list of tokens.
|
207 |
-
"""
|
208 |
-
tokens = []
|
209 |
-
text = unicodedata.normalize("NFC", text)
|
210 |
-
|
211 |
-
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
-
for t in self.tokenizer.encode(
|
213 |
-
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
-
):
|
215 |
-
tokens.append(self.decoder[t])
|
216 |
-
return tokens
|
217 |
-
|
218 |
-
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
-
"""
|
220 |
-
Converts a sequence of tokens in a single string.
|
221 |
-
"""
|
222 |
-
text = ""
|
223 |
-
temp = b""
|
224 |
-
for t in tokens:
|
225 |
-
if isinstance(t, str):
|
226 |
-
if temp:
|
227 |
-
text += temp.decode("utf-8", errors=self.errors)
|
228 |
-
temp = b""
|
229 |
-
text += t
|
230 |
-
elif isinstance(t, bytes):
|
231 |
-
temp += t
|
232 |
-
else:
|
233 |
-
raise TypeError("token should only be of type types or str")
|
234 |
-
if temp:
|
235 |
-
text += temp.decode("utf-8", errors=self.errors)
|
236 |
-
return text
|
237 |
-
|
238 |
-
@property
|
239 |
-
def vocab_size(self):
|
240 |
-
return self.tokenizer.n_vocab
|
241 |
-
|
242 |
-
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
-
"""Converts an id to a token, special tokens included"""
|
244 |
-
if index in self.decoder:
|
245 |
-
return self.decoder[index]
|
246 |
-
raise ValueError("unknown ids")
|
247 |
-
|
248 |
-
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
-
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
-
if token in self.special_tokens:
|
251 |
-
return self.special_tokens[token]
|
252 |
-
if token in self.mergeable_ranks:
|
253 |
-
return self.mergeable_ranks[token]
|
254 |
-
raise ValueError("unknown token")
|
255 |
-
|
256 |
-
def _tokenize(self, text: str, **kwargs):
|
257 |
-
"""
|
258 |
-
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
-
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
-
|
261 |
-
Do NOT take care of added tokens.
|
262 |
-
"""
|
263 |
-
raise NotImplementedError
|
264 |
-
|
265 |
-
def _decode(
|
266 |
-
self,
|
267 |
-
token_ids: Union[int, List[int]],
|
268 |
-
skip_special_tokens: bool = False,
|
269 |
-
errors: str = None,
|
270 |
-
**kwargs,
|
271 |
-
) -> str:
|
272 |
-
if isinstance(token_ids, int):
|
273 |
-
token_ids = [token_ids]
|
274 |
-
if skip_special_tokens:
|
275 |
-
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
-
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0070000_hf/tokenizer_config.json
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"model_max_length": 8192,
|
3 |
-
"tokenizer_class": "QWenTokenizer",
|
4 |
-
"auto_map": {
|
5 |
-
"AutoTokenizer": [
|
6 |
-
"tokenization_qwen.QWenTokenizer",
|
7 |
-
null
|
8 |
-
]
|
9 |
-
},
|
10 |
-
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
|
11 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0084772_hf/config.json
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"architectures": [
|
3 |
-
"MistralForCausalLM"
|
4 |
-
],
|
5 |
-
"attention_bias": false,
|
6 |
-
"attention_dropout": 0.0,
|
7 |
-
"bos_token_id": 151849,
|
8 |
-
"eos_token_id": 151850,
|
9 |
-
"head_dim": 64,
|
10 |
-
"hidden_act": "silu",
|
11 |
-
"hidden_size": 576,
|
12 |
-
"initializer_range": 0.02,
|
13 |
-
"intermediate_size": 1536,
|
14 |
-
"max_position_embeddings": 8192,
|
15 |
-
"model_type": "mistral",
|
16 |
-
"num_attention_heads": 9,
|
17 |
-
"num_hidden_layers": 30,
|
18 |
-
"num_key_value_heads": 3,
|
19 |
-
"rms_norm_eps": 1e-05,
|
20 |
-
"rope_theta": 10000,
|
21 |
-
"sliding_window": 8192,
|
22 |
-
"tie_word_embeddings": true,
|
23 |
-
"torch_dtype": "bfloat16",
|
24 |
-
"transformers_version": "4.44.2",
|
25 |
-
"use_cache": true,
|
26 |
-
"vocab_size": 151851
|
27 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0084772_hf/generation_config.json
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_from_model_config": true,
|
3 |
-
"bos_token_id": 151849,
|
4 |
-
"eos_token_id": 151850,
|
5 |
-
"transformers_version": "4.44.2"
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0084772_hf/model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:fe81ee1a16d461cf32d9a2ee119c901a21d139fd1f120f506e11d5fb196ba7df
|
3 |
-
size 562302352
|
|
|
|
|
|
|
|
cooldown/iter_0084772_hf/qwen.tiktoken
DELETED
The diff for this file is too large to render.
See raw diff
|
|
cooldown/iter_0084772_hf/qwen_generation_utils.py
DELETED
@@ -1,416 +0,0 @@
|
|
1 |
-
# Copyright (c) Alibaba Cloud.
|
2 |
-
#
|
3 |
-
# This source code is licensed under the license found in the
|
4 |
-
# LICENSE file in the root directory of this source tree.
|
5 |
-
|
6 |
-
"""Generation support."""
|
7 |
-
|
8 |
-
from typing import Tuple, List, Union, Iterable
|
9 |
-
|
10 |
-
import numpy as np
|
11 |
-
import torch
|
12 |
-
import torch.nn.functional as F
|
13 |
-
from transformers import PreTrainedTokenizer
|
14 |
-
from transformers import logging
|
15 |
-
from transformers.generation import LogitsProcessor
|
16 |
-
|
17 |
-
logger = logging.get_logger(__name__)
|
18 |
-
|
19 |
-
# Types.
|
20 |
-
HistoryType = List[Tuple[str, str]]
|
21 |
-
TokensType = List[int]
|
22 |
-
BatchTokensType = List[List[int]]
|
23 |
-
|
24 |
-
|
25 |
-
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
|
26 |
-
for tokens in batch:
|
27 |
-
context_length = len(tokens)
|
28 |
-
if context_length < seq_length:
|
29 |
-
tokens.extend([pad_id] * (seq_length - context_length))
|
30 |
-
return batch
|
31 |
-
|
32 |
-
|
33 |
-
def get_ltor_masks_and_position_ids(
|
34 |
-
data,
|
35 |
-
eod_token,
|
36 |
-
reset_position_ids,
|
37 |
-
reset_attention_mask,
|
38 |
-
eod_mask_loss,
|
39 |
-
):
|
40 |
-
"""Build masks and position id for left to right model."""
|
41 |
-
|
42 |
-
# Extract batch size and sequence length.
|
43 |
-
micro_batch_size, seq_length = data.size()
|
44 |
-
|
45 |
-
# Attention mask (lower triangular).
|
46 |
-
if reset_attention_mask:
|
47 |
-
att_mask_batch = micro_batch_size
|
48 |
-
else:
|
49 |
-
att_mask_batch = 1
|
50 |
-
attention_mask = torch.tril(
|
51 |
-
torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
|
52 |
-
).view(att_mask_batch, 1, seq_length, seq_length)
|
53 |
-
|
54 |
-
# Loss mask.
|
55 |
-
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
|
56 |
-
if eod_mask_loss:
|
57 |
-
loss_mask[data == eod_token] = 0.0
|
58 |
-
|
59 |
-
# Position ids.
|
60 |
-
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
|
61 |
-
position_ids = position_ids.unsqueeze(0).expand_as(data)
|
62 |
-
# We need to clone as the ids will be modifed based on batch index.
|
63 |
-
if reset_position_ids:
|
64 |
-
position_ids = position_ids.clone()
|
65 |
-
|
66 |
-
if reset_position_ids or reset_attention_mask:
|
67 |
-
# Loop through the batches:
|
68 |
-
for b in range(micro_batch_size):
|
69 |
-
|
70 |
-
# Find indecies where EOD token is.
|
71 |
-
eod_index = position_ids[b, data[b] == eod_token]
|
72 |
-
# Detach indecies from positions if going to modify positions.
|
73 |
-
if reset_position_ids:
|
74 |
-
eod_index = eod_index.clone()
|
75 |
-
|
76 |
-
# Loop through EOD indecies:
|
77 |
-
prev_index = 0
|
78 |
-
for j in range(eod_index.size()[0]):
|
79 |
-
i = eod_index[j]
|
80 |
-
# Mask attention loss.
|
81 |
-
if reset_attention_mask:
|
82 |
-
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
|
83 |
-
# Reset positions.
|
84 |
-
if reset_position_ids:
|
85 |
-
position_ids[b, (i + 1) :] -= i + 1 - prev_index
|
86 |
-
prev_index = i + 1
|
87 |
-
|
88 |
-
# Convert attention mask to binary:
|
89 |
-
attention_mask = attention_mask < 0.5
|
90 |
-
|
91 |
-
return attention_mask, loss_mask, position_ids
|
92 |
-
|
93 |
-
|
94 |
-
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
|
95 |
-
"""Generate batch from context tokens."""
|
96 |
-
# Move to GPU.
|
97 |
-
tokens = context_tokens.contiguous().to(context_tokens.device)
|
98 |
-
# Get the attention mask and postition ids.
|
99 |
-
attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
|
100 |
-
tokens,
|
101 |
-
eod_id,
|
102 |
-
reset_position_ids=False,
|
103 |
-
reset_attention_mask=False,
|
104 |
-
eod_mask_loss=False,
|
105 |
-
)
|
106 |
-
return tokens, attention_mask, position_ids
|
107 |
-
|
108 |
-
|
109 |
-
def get_stop_words_ids(chat_format, tokenizer):
|
110 |
-
if chat_format == "raw":
|
111 |
-
stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
|
112 |
-
elif chat_format == "chatml":
|
113 |
-
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
|
114 |
-
else:
|
115 |
-
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
116 |
-
return stop_words_ids
|
117 |
-
|
118 |
-
|
119 |
-
def make_context(
|
120 |
-
tokenizer: PreTrainedTokenizer,
|
121 |
-
query: str,
|
122 |
-
history: List[Tuple[str, str]] = None,
|
123 |
-
system: str = "",
|
124 |
-
max_window_size: int = 6144,
|
125 |
-
chat_format: str = "chatml",
|
126 |
-
):
|
127 |
-
if history is None:
|
128 |
-
history = []
|
129 |
-
|
130 |
-
if chat_format == "chatml":
|
131 |
-
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
132 |
-
im_start_tokens = [tokenizer.im_start_id]
|
133 |
-
im_end_tokens = [tokenizer.im_end_id]
|
134 |
-
nl_tokens = tokenizer.encode("\n")
|
135 |
-
|
136 |
-
def _tokenize_str(role, content):
|
137 |
-
return f"{role}\n{content}", tokenizer.encode(
|
138 |
-
role, allowed_special=set()
|
139 |
-
) + nl_tokens + tokenizer.encode(content, allowed_special=set())
|
140 |
-
|
141 |
-
system_text, system_tokens_part = _tokenize_str("system", system)
|
142 |
-
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
143 |
-
|
144 |
-
raw_text = ""
|
145 |
-
context_tokens = []
|
146 |
-
|
147 |
-
for turn_query, turn_response in reversed(history):
|
148 |
-
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
149 |
-
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
150 |
-
response_text, response_tokens_part = _tokenize_str(
|
151 |
-
"assistant", turn_response
|
152 |
-
)
|
153 |
-
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
154 |
-
|
155 |
-
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
156 |
-
prev_chat = (
|
157 |
-
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
158 |
-
)
|
159 |
-
|
160 |
-
current_context_size = (
|
161 |
-
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
162 |
-
)
|
163 |
-
if current_context_size < max_window_size:
|
164 |
-
context_tokens = next_context_tokens + context_tokens
|
165 |
-
raw_text = prev_chat + raw_text
|
166 |
-
else:
|
167 |
-
break
|
168 |
-
|
169 |
-
context_tokens = system_tokens + context_tokens
|
170 |
-
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
171 |
-
context_tokens += (
|
172 |
-
nl_tokens
|
173 |
-
+ im_start_tokens
|
174 |
-
+ _tokenize_str("user", query)[1]
|
175 |
-
+ im_end_tokens
|
176 |
-
+ nl_tokens
|
177 |
-
+ im_start_tokens
|
178 |
-
+ tokenizer.encode("assistant")
|
179 |
-
+ nl_tokens
|
180 |
-
)
|
181 |
-
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
|
182 |
-
|
183 |
-
elif chat_format == "raw":
|
184 |
-
raw_text = query
|
185 |
-
context_tokens = tokenizer.encode(raw_text)
|
186 |
-
else:
|
187 |
-
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
188 |
-
|
189 |
-
return raw_text, context_tokens
|
190 |
-
|
191 |
-
|
192 |
-
def _decode_default(
|
193 |
-
tokens: List[int],
|
194 |
-
*,
|
195 |
-
stop_words: List[str],
|
196 |
-
eod_words: List[str],
|
197 |
-
tokenizer: PreTrainedTokenizer,
|
198 |
-
raw_text_len: int,
|
199 |
-
verbose: bool = False,
|
200 |
-
return_end_reason: bool = False,
|
201 |
-
errors: str='replace',
|
202 |
-
):
|
203 |
-
trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
|
204 |
-
if verbose:
|
205 |
-
print("\nRaw Generate: ", trim_decode_tokens)
|
206 |
-
|
207 |
-
end_reason = f"Gen length {len(tokens)}"
|
208 |
-
for stop_word in stop_words:
|
209 |
-
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
210 |
-
for eod_word in eod_words:
|
211 |
-
if eod_word in trim_decode_tokens:
|
212 |
-
end_reason = f"Gen {eod_word!r}"
|
213 |
-
trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
|
214 |
-
trim_decode_tokens = trim_decode_tokens.strip()
|
215 |
-
if verbose:
|
216 |
-
print("\nEnd Reason:", end_reason)
|
217 |
-
print("\nGenerate: ", trim_decode_tokens)
|
218 |
-
|
219 |
-
if return_end_reason:
|
220 |
-
return trim_decode_tokens, end_reason
|
221 |
-
else:
|
222 |
-
return trim_decode_tokens
|
223 |
-
|
224 |
-
|
225 |
-
def _decode_chatml(
|
226 |
-
tokens: List[int],
|
227 |
-
*,
|
228 |
-
stop_words: List[str],
|
229 |
-
eod_token_ids: List[int],
|
230 |
-
tokenizer: PreTrainedTokenizer,
|
231 |
-
raw_text_len: int,
|
232 |
-
context_length: int,
|
233 |
-
verbose: bool = False,
|
234 |
-
return_end_reason: bool = False,
|
235 |
-
errors: str='replace'
|
236 |
-
):
|
237 |
-
end_reason = f"Gen length {len(tokens)}"
|
238 |
-
eod_token_idx = context_length
|
239 |
-
for eod_token_idx in range(context_length, len(tokens)):
|
240 |
-
if tokens[eod_token_idx] in eod_token_ids:
|
241 |
-
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
|
242 |
-
break
|
243 |
-
|
244 |
-
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
|
245 |
-
if verbose:
|
246 |
-
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
|
247 |
-
print("\nRaw Generate:", trim_decode_tokens)
|
248 |
-
print("\nEnd Reason:", end_reason)
|
249 |
-
for stop_word in stop_words:
|
250 |
-
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
251 |
-
trim_decode_tokens = trim_decode_tokens.strip()
|
252 |
-
if verbose:
|
253 |
-
print("\nGenerate:", trim_decode_tokens)
|
254 |
-
|
255 |
-
if return_end_reason:
|
256 |
-
return trim_decode_tokens, end_reason
|
257 |
-
else:
|
258 |
-
return trim_decode_tokens
|
259 |
-
|
260 |
-
|
261 |
-
def decode_tokens(
|
262 |
-
tokens: Union[torch.LongTensor, TokensType],
|
263 |
-
tokenizer: PreTrainedTokenizer,
|
264 |
-
raw_text_len: int,
|
265 |
-
context_length: int,
|
266 |
-
chat_format: str,
|
267 |
-
verbose: bool = False,
|
268 |
-
return_end_reason: bool = False,
|
269 |
-
errors: str="replace",
|
270 |
-
) -> str:
|
271 |
-
if torch.is_tensor(tokens):
|
272 |
-
tokens = tokens.cpu().numpy().tolist()
|
273 |
-
|
274 |
-
if chat_format == "chatml":
|
275 |
-
return _decode_chatml(
|
276 |
-
tokens,
|
277 |
-
stop_words=[],
|
278 |
-
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
|
279 |
-
tokenizer=tokenizer,
|
280 |
-
raw_text_len=raw_text_len,
|
281 |
-
context_length=context_length,
|
282 |
-
verbose=verbose,
|
283 |
-
return_end_reason=return_end_reason,
|
284 |
-
errors=errors,
|
285 |
-
)
|
286 |
-
elif chat_format == "raw":
|
287 |
-
return _decode_default(
|
288 |
-
tokens,
|
289 |
-
stop_words=["<|endoftext|>"],
|
290 |
-
eod_words=["<|endoftext|>"],
|
291 |
-
tokenizer=tokenizer,
|
292 |
-
raw_text_len=raw_text_len,
|
293 |
-
verbose=verbose,
|
294 |
-
return_end_reason=return_end_reason,
|
295 |
-
errors=errors,
|
296 |
-
)
|
297 |
-
else:
|
298 |
-
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
299 |
-
|
300 |
-
|
301 |
-
class StopWordsLogitsProcessor(LogitsProcessor):
|
302 |
-
"""
|
303 |
-
:class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
|
304 |
-
|
305 |
-
Args:
|
306 |
-
stop_words_ids (:obj:`List[List[int]]`):
|
307 |
-
List of list of token ids of stop ids. In order to get the tokens of the words
|
308 |
-
that should not appear in the generated text, use :obj:`tokenizer(bad_word,
|
309 |
-
add_prefix_space=True).input_ids`.
|
310 |
-
eos_token_id (:obj:`int`):
|
311 |
-
The id of the `end-of-sequence` token.
|
312 |
-
"""
|
313 |
-
|
314 |
-
def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
|
315 |
-
|
316 |
-
if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
|
317 |
-
raise ValueError(
|
318 |
-
f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
|
319 |
-
)
|
320 |
-
if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
|
321 |
-
raise ValueError(
|
322 |
-
f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
|
323 |
-
)
|
324 |
-
if any(
|
325 |
-
any(
|
326 |
-
(not isinstance(token_id, (int, np.integer)) or token_id < 0)
|
327 |
-
for token_id in stop_word_ids
|
328 |
-
)
|
329 |
-
for stop_word_ids in stop_words_ids
|
330 |
-
):
|
331 |
-
raise ValueError(
|
332 |
-
f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
|
333 |
-
)
|
334 |
-
|
335 |
-
self.stop_words_ids = list(
|
336 |
-
filter(
|
337 |
-
lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
|
338 |
-
)
|
339 |
-
)
|
340 |
-
self.eos_token_id = eos_token_id
|
341 |
-
for stop_token_seq in self.stop_words_ids:
|
342 |
-
assert (
|
343 |
-
len(stop_token_seq) > 0
|
344 |
-
), "Stop words token sequences {} cannot have an empty list".format(
|
345 |
-
stop_words_ids
|
346 |
-
)
|
347 |
-
|
348 |
-
def __call__(
|
349 |
-
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
|
350 |
-
) -> torch.FloatTensor:
|
351 |
-
stopped_samples = self._calc_stopped_samples(input_ids)
|
352 |
-
for i, should_stop in enumerate(stopped_samples):
|
353 |
-
if should_stop:
|
354 |
-
scores[i, self.eos_token_id] = float(2**15)
|
355 |
-
return scores
|
356 |
-
|
357 |
-
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
|
358 |
-
if len(tokens) == 0:
|
359 |
-
# if bad word tokens is just one token always ban it
|
360 |
-
return True
|
361 |
-
elif len(tokens) > len(prev_tokens):
|
362 |
-
# if bad word tokens are longer then prev input_ids they can't be equal
|
363 |
-
return False
|
364 |
-
elif prev_tokens[-len(tokens) :].tolist() == tokens:
|
365 |
-
# if tokens match
|
366 |
-
return True
|
367 |
-
else:
|
368 |
-
return False
|
369 |
-
|
370 |
-
def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
|
371 |
-
stopped_samples = []
|
372 |
-
for prev_input_ids_slice in prev_input_ids:
|
373 |
-
match = False
|
374 |
-
for stop_token_seq in self.stop_words_ids:
|
375 |
-
if self._tokens_match(prev_input_ids_slice, stop_token_seq):
|
376 |
-
# if tokens do not match continue
|
377 |
-
match = True
|
378 |
-
break
|
379 |
-
stopped_samples.append(match)
|
380 |
-
|
381 |
-
return stopped_samples
|
382 |
-
|
383 |
-
|
384 |
-
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
|
385 |
-
"""This function has been mostly taken from huggingface conversational
|
386 |
-
ai code at
|
387 |
-
https://medium.com/huggingface/how-to-build-a-state-of-the-art-
|
388 |
-
conversational-ai-with-transfer-learning-2d818ac26313"""
|
389 |
-
|
390 |
-
if top_k > 0:
|
391 |
-
# Remove all tokens with a probability less than the
|
392 |
-
# last token of the top-k
|
393 |
-
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
394 |
-
logits[indices_to_remove] = filter_value
|
395 |
-
|
396 |
-
if top_p > 0.0:
|
397 |
-
# Cconvert to 1D
|
398 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
399 |
-
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
400 |
-
|
401 |
-
# Remove tokens with cumulative probability above the threshold
|
402 |
-
sorted_indices_to_remove = cumulative_probs > top_p
|
403 |
-
# Shift the indices to the right to keep also the first token
|
404 |
-
# above the threshold
|
405 |
-
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
406 |
-
sorted_indices_to_remove[..., 0] = 0
|
407 |
-
for i in range(sorted_indices.size(0)):
|
408 |
-
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
|
409 |
-
logits[i][indices_to_remove] = filter_value
|
410 |
-
|
411 |
-
return logits
|
412 |
-
|
413 |
-
|
414 |
-
def switch(val1, val2, boolean):
|
415 |
-
boolean = boolean.type_as(val1)
|
416 |
-
return (1 - boolean) * val1 + boolean * val2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0084772_hf/special_tokens_map.json
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": "<|extra_203|>",
|
3 |
-
"eos_token": "<|extra_204|>",
|
4 |
-
"unk_token": "<|endoftext|>",
|
5 |
-
"pad_token": "<|endoftext|>"
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0084772_hf/tokenization_qwen.py
DELETED
@@ -1,276 +0,0 @@
|
|
1 |
-
# Copyright (c) Alibaba Cloud.
|
2 |
-
#
|
3 |
-
# This source code is licensed under the license found in the
|
4 |
-
# LICENSE file in the root directory of this source tree.
|
5 |
-
|
6 |
-
"""Tokenization classes for QWen."""
|
7 |
-
|
8 |
-
import base64
|
9 |
-
import logging
|
10 |
-
import os
|
11 |
-
import unicodedata
|
12 |
-
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
-
|
14 |
-
import tiktoken
|
15 |
-
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
-
|
17 |
-
logger = logging.getLogger(__name__)
|
18 |
-
|
19 |
-
|
20 |
-
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
-
|
22 |
-
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
-
ENDOFTEXT = "<|endoftext|>"
|
24 |
-
IMSTART = "<|im_start|>"
|
25 |
-
IMEND = "<|im_end|>"
|
26 |
-
# as the default behavior is changed to allow special tokens in
|
27 |
-
# regular texts, the surface forms of special tokens need to be
|
28 |
-
# as different as possible to minimize the impact
|
29 |
-
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
-
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
-
SPECIAL_START_ID = 151643
|
32 |
-
SPECIAL_TOKENS = tuple(
|
33 |
-
enumerate(
|
34 |
-
(
|
35 |
-
(
|
36 |
-
ENDOFTEXT,
|
37 |
-
IMSTART,
|
38 |
-
IMEND,
|
39 |
-
)
|
40 |
-
+ EXTRAS
|
41 |
-
),
|
42 |
-
start=SPECIAL_START_ID,
|
43 |
-
)
|
44 |
-
)
|
45 |
-
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
-
|
47 |
-
|
48 |
-
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
-
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
-
contents = f.read()
|
51 |
-
return {
|
52 |
-
base64.b64decode(token): int(rank)
|
53 |
-
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
-
}
|
55 |
-
|
56 |
-
|
57 |
-
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
-
"""QWen tokenizer."""
|
59 |
-
|
60 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
-
|
62 |
-
def __init__(
|
63 |
-
self,
|
64 |
-
vocab_file,
|
65 |
-
errors="replace",
|
66 |
-
extra_vocab_file=None,
|
67 |
-
**kwargs,
|
68 |
-
):
|
69 |
-
super().__init__(**kwargs)
|
70 |
-
|
71 |
-
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
-
# use ignore if you are in streaming inference
|
73 |
-
self.errors = errors
|
74 |
-
|
75 |
-
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
-
self.special_tokens = {
|
77 |
-
token: index
|
78 |
-
for index, token in SPECIAL_TOKENS
|
79 |
-
}
|
80 |
-
|
81 |
-
# try load extra vocab from file
|
82 |
-
if extra_vocab_file is not None:
|
83 |
-
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
-
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
-
for token, index in extra_mergeable_ranks.items():
|
86 |
-
if token in self.mergeable_ranks:
|
87 |
-
logger.info(f"extra token {token} exists, skipping")
|
88 |
-
continue
|
89 |
-
if index in used_ids:
|
90 |
-
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
-
continue
|
92 |
-
self.mergeable_ranks[token] = index
|
93 |
-
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
-
|
95 |
-
enc = tiktoken.Encoding(
|
96 |
-
"Qwen",
|
97 |
-
pat_str=PAT_STR,
|
98 |
-
mergeable_ranks=self.mergeable_ranks,
|
99 |
-
special_tokens=self.special_tokens,
|
100 |
-
)
|
101 |
-
assert (
|
102 |
-
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
-
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
-
|
105 |
-
self.decoder = {
|
106 |
-
v: k for k, v in self.mergeable_ranks.items()
|
107 |
-
} # type: dict[int, bytes|str]
|
108 |
-
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
-
|
110 |
-
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
-
|
112 |
-
self.eod_id = self.tokenizer.eot_token
|
113 |
-
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
-
self.im_end_id = self.special_tokens[IMEND]
|
115 |
-
|
116 |
-
def __getstate__(self):
|
117 |
-
# for pickle lovers
|
118 |
-
state = self.__dict__.copy()
|
119 |
-
del state["tokenizer"]
|
120 |
-
return state
|
121 |
-
|
122 |
-
def __setstate__(self, state):
|
123 |
-
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
-
self.__dict__.update(state)
|
125 |
-
enc = tiktoken.Encoding(
|
126 |
-
"Qwen",
|
127 |
-
pat_str=PAT_STR,
|
128 |
-
mergeable_ranks=self.mergeable_ranks,
|
129 |
-
special_tokens=self.special_tokens,
|
130 |
-
)
|
131 |
-
self.tokenizer = enc
|
132 |
-
|
133 |
-
def __len__(self) -> int:
|
134 |
-
return self.tokenizer.n_vocab
|
135 |
-
|
136 |
-
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
-
return self.mergeable_ranks
|
138 |
-
|
139 |
-
def convert_tokens_to_ids(
|
140 |
-
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
-
) -> List[int]:
|
142 |
-
ids = []
|
143 |
-
if isinstance(tokens, (str, bytes)):
|
144 |
-
if tokens in self.special_tokens:
|
145 |
-
return self.special_tokens[tokens]
|
146 |
-
else:
|
147 |
-
return self.mergeable_ranks.get(tokens)
|
148 |
-
for token in tokens:
|
149 |
-
if token in self.special_tokens:
|
150 |
-
ids.append(self.special_tokens[token])
|
151 |
-
else:
|
152 |
-
ids.append(self.mergeable_ranks.get(token))
|
153 |
-
return ids
|
154 |
-
|
155 |
-
def _add_tokens(
|
156 |
-
self,
|
157 |
-
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
-
special_tokens: bool = False,
|
159 |
-
) -> int:
|
160 |
-
if not special_tokens and new_tokens:
|
161 |
-
raise ValueError("Adding regular tokens is not supported")
|
162 |
-
for token in new_tokens:
|
163 |
-
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
-
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
-
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
-
return 0
|
167 |
-
|
168 |
-
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
-
"""
|
170 |
-
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
-
|
172 |
-
Returns:
|
173 |
-
`Tuple(str)`: Paths to the files saved.
|
174 |
-
"""
|
175 |
-
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
-
with open(file_path, "w", encoding="utf8") as w:
|
177 |
-
for k, v in self.mergeable_ranks.items():
|
178 |
-
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
-
w.write(line)
|
180 |
-
return (file_path,)
|
181 |
-
|
182 |
-
def tokenize(
|
183 |
-
self,
|
184 |
-
text: str,
|
185 |
-
allowed_special: Union[Set, str] = "all",
|
186 |
-
disallowed_special: Union[Collection, str] = (),
|
187 |
-
**kwargs,
|
188 |
-
) -> List[Union[bytes, str]]:
|
189 |
-
"""
|
190 |
-
Converts a string in a sequence of tokens.
|
191 |
-
|
192 |
-
Args:
|
193 |
-
text (`str`):
|
194 |
-
The sequence to be encoded.
|
195 |
-
allowed_special (`Literal["all"]` or `set`):
|
196 |
-
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
-
Default to "all".
|
198 |
-
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
-
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
-
Default to an empty tuple.
|
201 |
-
|
202 |
-
kwargs (additional keyword arguments, *optional*):
|
203 |
-
Will be passed to the underlying model specific encode method.
|
204 |
-
|
205 |
-
Returns:
|
206 |
-
`List[bytes|str]`: The list of tokens.
|
207 |
-
"""
|
208 |
-
tokens = []
|
209 |
-
text = unicodedata.normalize("NFC", text)
|
210 |
-
|
211 |
-
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
-
for t in self.tokenizer.encode(
|
213 |
-
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
-
):
|
215 |
-
tokens.append(self.decoder[t])
|
216 |
-
return tokens
|
217 |
-
|
218 |
-
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
-
"""
|
220 |
-
Converts a sequence of tokens in a single string.
|
221 |
-
"""
|
222 |
-
text = ""
|
223 |
-
temp = b""
|
224 |
-
for t in tokens:
|
225 |
-
if isinstance(t, str):
|
226 |
-
if temp:
|
227 |
-
text += temp.decode("utf-8", errors=self.errors)
|
228 |
-
temp = b""
|
229 |
-
text += t
|
230 |
-
elif isinstance(t, bytes):
|
231 |
-
temp += t
|
232 |
-
else:
|
233 |
-
raise TypeError("token should only be of type types or str")
|
234 |
-
if temp:
|
235 |
-
text += temp.decode("utf-8", errors=self.errors)
|
236 |
-
return text
|
237 |
-
|
238 |
-
@property
|
239 |
-
def vocab_size(self):
|
240 |
-
return self.tokenizer.n_vocab
|
241 |
-
|
242 |
-
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
-
"""Converts an id to a token, special tokens included"""
|
244 |
-
if index in self.decoder:
|
245 |
-
return self.decoder[index]
|
246 |
-
raise ValueError("unknown ids")
|
247 |
-
|
248 |
-
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
-
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
-
if token in self.special_tokens:
|
251 |
-
return self.special_tokens[token]
|
252 |
-
if token in self.mergeable_ranks:
|
253 |
-
return self.mergeable_ranks[token]
|
254 |
-
raise ValueError("unknown token")
|
255 |
-
|
256 |
-
def _tokenize(self, text: str, **kwargs):
|
257 |
-
"""
|
258 |
-
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
-
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
-
|
261 |
-
Do NOT take care of added tokens.
|
262 |
-
"""
|
263 |
-
raise NotImplementedError
|
264 |
-
|
265 |
-
def _decode(
|
266 |
-
self,
|
267 |
-
token_ids: Union[int, List[int]],
|
268 |
-
skip_special_tokens: bool = False,
|
269 |
-
errors: str = None,
|
270 |
-
**kwargs,
|
271 |
-
) -> str:
|
272 |
-
if isinstance(token_ids, int):
|
273 |
-
token_ids = [token_ids]
|
274 |
-
if skip_special_tokens:
|
275 |
-
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
-
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cooldown/iter_0084772_hf/tokenizer_config.json
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"model_max_length": 8192,
|
3 |
-
"tokenizer_class": "QWenTokenizer",
|
4 |
-
"auto_map": {
|
5 |
-
"AutoTokenizer": [
|
6 |
-
"tokenization_qwen.QWenTokenizer",
|
7 |
-
null
|
8 |
-
]
|
9 |
-
},
|
10 |
-
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
|
11 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|