Add files using upload-large-folder tool
Browse files- chat_template.jinja +6 -0
- config.json +53 -0
- configuration_deepseek.py +212 -0
- generation_config.json +6 -0
- model.safetensors +3 -0
- qwen.tiktoken +0 -0
- special_tokens_map.json +6 -0
- tokenization_qwen.py +276 -0
- tokenizer_config.json +17 -0
chat_template.jinja
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system
|
2 |
+
You are a helpful assistant<|im_end|>
|
3 |
+
' }}{% endif %}{{'<|im_start|>' + message['role'] + '
|
4 |
+
' + message['content'] + '<|im_end|>' + '
|
5 |
+
'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant
|
6 |
+
' }}{% endif %}
|
config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DeepseekV3ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_deepseek.DeepseekV3Config",
|
9 |
+
"AutoModel": "modeling_deepseek.DeepseekV3Model",
|
10 |
+
"AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"
|
11 |
+
},
|
12 |
+
"aux_loss_alpha": 0.001,
|
13 |
+
"bos_token_id": 151644,
|
14 |
+
"eos_token_id": 151645,
|
15 |
+
"ep_size": 1,
|
16 |
+
"first_k_dense_replace": 1,
|
17 |
+
"hidden_act": "silu",
|
18 |
+
"hidden_size": 1280,
|
19 |
+
"initializer_range": 0.006,
|
20 |
+
"intermediate_size": 7168,
|
21 |
+
"kv_lora_rank": 512,
|
22 |
+
"max_position_embeddings": 4096,
|
23 |
+
"model_type": "deepseek_v3",
|
24 |
+
"moe_intermediate_size": 896,
|
25 |
+
"moe_layer_freq": 1,
|
26 |
+
"n_group": 1,
|
27 |
+
"n_routed_experts": 64,
|
28 |
+
"n_shared_experts": 2,
|
29 |
+
"norm_topk_prob": true,
|
30 |
+
"num_attention_heads": 10,
|
31 |
+
"num_experts_per_tok": 6,
|
32 |
+
"num_hidden_layers": 6,
|
33 |
+
"num_key_value_heads": 10,
|
34 |
+
"num_nextn_predict_layers": 1,
|
35 |
+
"pretraining_tp": 1,
|
36 |
+
"q_lora_rank": null,
|
37 |
+
"qk_nope_head_dim": 128,
|
38 |
+
"qk_rope_head_dim": 64,
|
39 |
+
"rms_norm_eps": 1e-06,
|
40 |
+
"rope_scaling": null,
|
41 |
+
"rope_theta": 1000000,
|
42 |
+
"routed_scaling_factor": 2.446,
|
43 |
+
"scoring_func": "sigmoid",
|
44 |
+
"seq_aux": true,
|
45 |
+
"tie_word_embeddings": true,
|
46 |
+
"topk_group": 1,
|
47 |
+
"topk_method": "noaux_tc",
|
48 |
+
"torch_dtype": "bfloat16",
|
49 |
+
"transformers_version": "4.52.4",
|
50 |
+
"use_cache": false,
|
51 |
+
"v_head_dim": 128,
|
52 |
+
"vocab_size": 151851
|
53 |
+
}
|
configuration_deepseek.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copy from https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/configuration_deepseek.py
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
logger = logging.get_logger(__name__)
|
7 |
+
|
8 |
+
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
9 |
+
class DeepseekV3Config(PretrainedConfig):
|
10 |
+
r"""
|
11 |
+
This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
|
12 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
13 |
+
defaults will yield a similar configuration to that of the DeepSeek-V3.
|
14 |
+
|
15 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
16 |
+
documentation from [`PretrainedConfig`] for more information.
|
17 |
+
|
18 |
+
|
19 |
+
Args:
|
20 |
+
vocab_size (`int`, *optional*, defaults to 129280):
|
21 |
+
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
|
22 |
+
`inputs_ids` passed when calling [`DeepseekV3Model`]
|
23 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
24 |
+
Dimension of the hidden representations.
|
25 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
26 |
+
Dimension of the MLP representations.
|
27 |
+
moe_intermediate_size (`int`, *optional*, defaults to 1407):
|
28 |
+
Dimension of the MoE representations.
|
29 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
30 |
+
Number of hidden layers in the Transformer decoder.
|
31 |
+
num_nextn_predict_layers (`int`, *optional*, defaults to 1):
|
32 |
+
Number of nextn predict layers in the DeepSeekV3 Model.
|
33 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
34 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
35 |
+
n_shared_experts (`int`, *optional*, defaults to None):
|
36 |
+
Number of shared experts, None means dense model.
|
37 |
+
n_routed_experts (`int`, *optional*, defaults to None):
|
38 |
+
Number of routed experts, None means dense model.
|
39 |
+
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
|
40 |
+
Scaling factor or routed experts.
|
41 |
+
topk_method (`str`, *optional*, defaults to `gready`):
|
42 |
+
Topk method used in routed gate.
|
43 |
+
n_group (`int`, *optional*, defaults to None):
|
44 |
+
Number of groups for routed experts.
|
45 |
+
topk_group (`int`, *optional*, defaults to None):
|
46 |
+
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
|
47 |
+
num_experts_per_tok (`int`, *optional*, defaults to None):
|
48 |
+
Number of selected experts, None means dense model.
|
49 |
+
moe_layer_freq (`int`, *optional*, defaults to 1):
|
50 |
+
The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
|
51 |
+
first_k_dense_replace (`int`, *optional*, defaults to 0):
|
52 |
+
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
|
53 |
+
\--k dense layers--/
|
54 |
+
norm_topk_prob (`bool`, *optional*, defaults to False):
|
55 |
+
Whether to normalize the weights of the routed experts.
|
56 |
+
scoring_func (`str`, *optional*, defaults to 'softmax'):
|
57 |
+
Method of computing expert weights.
|
58 |
+
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
|
59 |
+
Auxiliary loss weight coefficient.
|
60 |
+
seq_aux = (`bool`, *optional*, defaults to True):
|
61 |
+
Whether to compute the auxiliary loss for each individual sample.
|
62 |
+
num_key_value_heads (`int`, *optional*):
|
63 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
64 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
65 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
66 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
67 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
68 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
69 |
+
`num_attention_heads`.
|
70 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
71 |
+
The non-linear activation function (function or string) in the decoder.
|
72 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
73 |
+
The maximum sequence length that this model might ever be used with.
|
74 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
75 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
76 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
77 |
+
The epsilon used by the rms normalization layers.
|
78 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
80 |
+
relevant if `config.is_decoder=True`.
|
81 |
+
pad_token_id (`int`, *optional*):
|
82 |
+
Padding token id.
|
83 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
84 |
+
Beginning of stream token id.
|
85 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
86 |
+
End of stream token id.
|
87 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
88 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
89 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
90 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
91 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
92 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
93 |
+
Whether to tie weight embeddings
|
94 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
95 |
+
The base period of the RoPE embeddings.
|
96 |
+
rope_scaling (`Dict`, *optional*):
|
97 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
98 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
99 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
100 |
+
`max_position_embeddings` to the expected new maximum.
|
101 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
102 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
103 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
104 |
+
The dropout ratio for the attention probabilities.
|
105 |
+
|
106 |
+
```python
|
107 |
+
>>> from transformers import DeepseekV3Model, DeepseekV3Config
|
108 |
+
|
109 |
+
>>> # Initializing a Deepseek-V3 style configuration
|
110 |
+
>>> configuration = DeepseekV3Config()
|
111 |
+
|
112 |
+
>>> # Accessing the model configuration
|
113 |
+
>>> configuration = model.config
|
114 |
+
```"""
|
115 |
+
|
116 |
+
model_type = "deepseek_v3"
|
117 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
118 |
+
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
vocab_size=129280,
|
122 |
+
hidden_size=7168,
|
123 |
+
intermediate_size=18432,
|
124 |
+
moe_intermediate_size = 2048,
|
125 |
+
num_hidden_layers=61,
|
126 |
+
num_nextn_predict_layers=1,
|
127 |
+
num_attention_heads=128,
|
128 |
+
num_key_value_heads=128,
|
129 |
+
n_shared_experts = 1,
|
130 |
+
n_routed_experts = 256,
|
131 |
+
ep_size = 1,
|
132 |
+
routed_scaling_factor = 2.5,
|
133 |
+
kv_lora_rank = 512,
|
134 |
+
q_lora_rank = 1536,
|
135 |
+
qk_rope_head_dim = 64,
|
136 |
+
v_head_dim = 128,
|
137 |
+
qk_nope_head_dim = 128,
|
138 |
+
topk_method = 'noaux_tc',
|
139 |
+
n_group = 8,
|
140 |
+
topk_group = 4,
|
141 |
+
num_experts_per_tok = 8,
|
142 |
+
moe_layer_freq = 1,
|
143 |
+
first_k_dense_replace = 3,
|
144 |
+
norm_topk_prob = True,
|
145 |
+
scoring_func = 'sigmoid',
|
146 |
+
aux_loss_alpha = 0.001,
|
147 |
+
seq_aux = True,
|
148 |
+
hidden_act="silu",
|
149 |
+
max_position_embeddings=4096,
|
150 |
+
initializer_range=0.02,
|
151 |
+
rms_norm_eps=1e-6,
|
152 |
+
use_cache=True,
|
153 |
+
pad_token_id=None,
|
154 |
+
bos_token_id=0,
|
155 |
+
eos_token_id=1,
|
156 |
+
pretraining_tp=1,
|
157 |
+
tie_word_embeddings=False,
|
158 |
+
rope_theta=10000.0,
|
159 |
+
rope_scaling=None,
|
160 |
+
attention_bias=False,
|
161 |
+
attention_dropout=0.0,
|
162 |
+
**kwargs,
|
163 |
+
):
|
164 |
+
self.vocab_size = vocab_size
|
165 |
+
self.max_position_embeddings = max_position_embeddings
|
166 |
+
self.hidden_size = hidden_size
|
167 |
+
self.intermediate_size = intermediate_size
|
168 |
+
self.moe_intermediate_size = moe_intermediate_size
|
169 |
+
self.num_hidden_layers = num_hidden_layers
|
170 |
+
self.num_nextn_predict_layers = num_nextn_predict_layers
|
171 |
+
self.num_attention_heads = num_attention_heads
|
172 |
+
self.n_shared_experts = n_shared_experts
|
173 |
+
self.n_routed_experts = n_routed_experts
|
174 |
+
self.ep_size = ep_size
|
175 |
+
self.routed_scaling_factor = routed_scaling_factor
|
176 |
+
self.kv_lora_rank = kv_lora_rank
|
177 |
+
self.q_lora_rank = q_lora_rank
|
178 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
179 |
+
self.v_head_dim = v_head_dim
|
180 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
181 |
+
self.topk_method = topk_method
|
182 |
+
self.n_group = n_group
|
183 |
+
self.topk_group = topk_group
|
184 |
+
self.num_experts_per_tok = num_experts_per_tok
|
185 |
+
self.moe_layer_freq = moe_layer_freq
|
186 |
+
self.first_k_dense_replace = first_k_dense_replace
|
187 |
+
self.norm_topk_prob = norm_topk_prob
|
188 |
+
self.scoring_func = scoring_func
|
189 |
+
self.aux_loss_alpha = aux_loss_alpha
|
190 |
+
self.seq_aux = seq_aux
|
191 |
+
# for backward compatibility
|
192 |
+
if num_key_value_heads is None:
|
193 |
+
num_key_value_heads = num_attention_heads
|
194 |
+
|
195 |
+
self.num_key_value_heads = num_key_value_heads
|
196 |
+
self.hidden_act = hidden_act
|
197 |
+
self.initializer_range = initializer_range
|
198 |
+
self.rms_norm_eps = rms_norm_eps
|
199 |
+
self.pretraining_tp = pretraining_tp
|
200 |
+
self.use_cache = use_cache
|
201 |
+
self.rope_theta = rope_theta
|
202 |
+
self.rope_scaling = rope_scaling
|
203 |
+
self.attention_bias = attention_bias
|
204 |
+
self.attention_dropout = attention_dropout
|
205 |
+
|
206 |
+
super().__init__(
|
207 |
+
pad_token_id=pad_token_id,
|
208 |
+
bos_token_id=bos_token_id,
|
209 |
+
eos_token_id=eos_token_id,
|
210 |
+
tie_word_embeddings=tie_word_embeddings,
|
211 |
+
**kwargs,
|
212 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 151644,
|
4 |
+
"eos_token_id": 151645,
|
5 |
+
"transformers_version": "4.52.4"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57c3bb227749d1bde282634591ef32bd8fd528439f04955a8141ffad818941a2
|
3 |
+
size 3178063824
|
qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|im_start|>",
|
3 |
+
"eos_token": "<|im_end|>",
|
4 |
+
"pad_token": "<|endoftext|>",
|
5 |
+
"unk_token": "<|endoftext|>"
|
6 |
+
}
|
tokenization_qwen.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
+
|
14 |
+
import tiktoken
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
+
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
+
SPECIAL_START_ID = 151643
|
32 |
+
SPECIAL_TOKENS = tuple(
|
33 |
+
enumerate(
|
34 |
+
(
|
35 |
+
(
|
36 |
+
ENDOFTEXT,
|
37 |
+
IMSTART,
|
38 |
+
IMEND,
|
39 |
+
)
|
40 |
+
+ EXTRAS
|
41 |
+
),
|
42 |
+
start=SPECIAL_START_ID,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
+
|
47 |
+
|
48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
+
contents = f.read()
|
51 |
+
return {
|
52 |
+
base64.b64decode(token): int(rank)
|
53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
+
"""QWen tokenizer."""
|
59 |
+
|
60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vocab_file,
|
65 |
+
errors="replace",
|
66 |
+
extra_vocab_file=None,
|
67 |
+
**kwargs,
|
68 |
+
):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
|
71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
+
# use ignore if you are in streaming inference
|
73 |
+
self.errors = errors
|
74 |
+
|
75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
+
self.special_tokens = {
|
77 |
+
token: index
|
78 |
+
for index, token in SPECIAL_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
# try load extra vocab from file
|
82 |
+
if extra_vocab_file is not None:
|
83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
+
for token, index in extra_mergeable_ranks.items():
|
86 |
+
if token in self.mergeable_ranks:
|
87 |
+
logger.info(f"extra token {token} exists, skipping")
|
88 |
+
continue
|
89 |
+
if index in used_ids:
|
90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
+
continue
|
92 |
+
self.mergeable_ranks[token] = index
|
93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
+
|
95 |
+
enc = tiktoken.Encoding(
|
96 |
+
"Qwen",
|
97 |
+
pat_str=PAT_STR,
|
98 |
+
mergeable_ranks=self.mergeable_ranks,
|
99 |
+
special_tokens=self.special_tokens,
|
100 |
+
)
|
101 |
+
assert (
|
102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
+
|
105 |
+
self.decoder = {
|
106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
107 |
+
} # type: dict[int, bytes|str]
|
108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
+
|
110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
+
|
112 |
+
self.eod_id = self.tokenizer.eot_token
|
113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
115 |
+
|
116 |
+
def __getstate__(self):
|
117 |
+
# for pickle lovers
|
118 |
+
state = self.__dict__.copy()
|
119 |
+
del state["tokenizer"]
|
120 |
+
return state
|
121 |
+
|
122 |
+
def __setstate__(self, state):
|
123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
+
self.__dict__.update(state)
|
125 |
+
enc = tiktoken.Encoding(
|
126 |
+
"Qwen",
|
127 |
+
pat_str=PAT_STR,
|
128 |
+
mergeable_ranks=self.mergeable_ranks,
|
129 |
+
special_tokens=self.special_tokens,
|
130 |
+
)
|
131 |
+
self.tokenizer = enc
|
132 |
+
|
133 |
+
def __len__(self) -> int:
|
134 |
+
return self.tokenizer.n_vocab
|
135 |
+
|
136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
+
return self.mergeable_ranks
|
138 |
+
|
139 |
+
def convert_tokens_to_ids(
|
140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
+
) -> List[int]:
|
142 |
+
ids = []
|
143 |
+
if isinstance(tokens, (str, bytes)):
|
144 |
+
if tokens in self.special_tokens:
|
145 |
+
return self.special_tokens[tokens]
|
146 |
+
else:
|
147 |
+
return self.mergeable_ranks.get(tokens)
|
148 |
+
for token in tokens:
|
149 |
+
if token in self.special_tokens:
|
150 |
+
ids.append(self.special_tokens[token])
|
151 |
+
else:
|
152 |
+
ids.append(self.mergeable_ranks.get(token))
|
153 |
+
return ids
|
154 |
+
|
155 |
+
def _add_tokens(
|
156 |
+
self,
|
157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
+
special_tokens: bool = False,
|
159 |
+
) -> int:
|
160 |
+
if not special_tokens and new_tokens:
|
161 |
+
raise ValueError("Adding regular tokens is not supported")
|
162 |
+
for token in new_tokens:
|
163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
+
return 0
|
167 |
+
|
168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
+
"""
|
170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`Tuple(str)`: Paths to the files saved.
|
174 |
+
"""
|
175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
177 |
+
for k, v in self.mergeable_ranks.items():
|
178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
+
w.write(line)
|
180 |
+
return (file_path,)
|
181 |
+
|
182 |
+
def tokenize(
|
183 |
+
self,
|
184 |
+
text: str,
|
185 |
+
allowed_special: Union[Set, str] = "all",
|
186 |
+
disallowed_special: Union[Collection, str] = (),
|
187 |
+
**kwargs,
|
188 |
+
) -> List[Union[bytes, str]]:
|
189 |
+
"""
|
190 |
+
Converts a string in a sequence of tokens.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
text (`str`):
|
194 |
+
The sequence to be encoded.
|
195 |
+
allowed_special (`Literal["all"]` or `set`):
|
196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
+
Default to "all".
|
198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
+
Default to an empty tuple.
|
201 |
+
|
202 |
+
kwargs (additional keyword arguments, *optional*):
|
203 |
+
Will be passed to the underlying model specific encode method.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`List[bytes|str]`: The list of tokens.
|
207 |
+
"""
|
208 |
+
tokens = []
|
209 |
+
text = unicodedata.normalize("NFC", text)
|
210 |
+
|
211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
+
for t in self.tokenizer.encode(
|
213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
+
):
|
215 |
+
tokens.append(self.decoder[t])
|
216 |
+
return tokens
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
+
"""
|
220 |
+
Converts a sequence of tokens in a single string.
|
221 |
+
"""
|
222 |
+
text = ""
|
223 |
+
temp = b""
|
224 |
+
for t in tokens:
|
225 |
+
if isinstance(t, str):
|
226 |
+
if temp:
|
227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
228 |
+
temp = b""
|
229 |
+
text += t
|
230 |
+
elif isinstance(t, bytes):
|
231 |
+
temp += t
|
232 |
+
else:
|
233 |
+
raise TypeError("token should only be of type types or str")
|
234 |
+
if temp:
|
235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
236 |
+
return text
|
237 |
+
|
238 |
+
@property
|
239 |
+
def vocab_size(self):
|
240 |
+
return self.tokenizer.n_vocab
|
241 |
+
|
242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
+
"""Converts an id to a token, special tokens included"""
|
244 |
+
if index in self.decoder:
|
245 |
+
return self.decoder[index]
|
246 |
+
raise ValueError("unknown ids")
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
+
if token in self.special_tokens:
|
251 |
+
return self.special_tokens[token]
|
252 |
+
if token in self.mergeable_ranks:
|
253 |
+
return self.mergeable_ranks[token]
|
254 |
+
raise ValueError("unknown token")
|
255 |
+
|
256 |
+
def _tokenize(self, text: str, **kwargs):
|
257 |
+
"""
|
258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Do NOT take care of added tokens.
|
262 |
+
"""
|
263 |
+
raise NotImplementedError
|
264 |
+
|
265 |
+
def _decode(
|
266 |
+
self,
|
267 |
+
token_ids: Union[int, List[int]],
|
268 |
+
skip_special_tokens: bool = False,
|
269 |
+
errors: str = None,
|
270 |
+
**kwargs,
|
271 |
+
) -> str:
|
272 |
+
if isinstance(token_ids, int):
|
273 |
+
token_ids = [token_ids]
|
274 |
+
if skip_special_tokens:
|
275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"tokenization_qwen.QWenTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"bos_token": "<|im_start|>",
|
10 |
+
"clean_up_tokenization_spaces": false,
|
11 |
+
"eos_token": "<|im_end|>",
|
12 |
+
"extra_special_tokens": {},
|
13 |
+
"model_max_length": 8192,
|
14 |
+
"pad_token": "<|endoftext|>",
|
15 |
+
"tokenizer_class": "QWenTokenizer",
|
16 |
+
"unk_token": "<|endoftext|>"
|
17 |
+
}
|