File size: 17,667 Bytes
b9ecc2e 44482ec 953dc6f 44482ec b9ecc2e 44482ec b4019bc 44482ec 3f6000f 44482ec 20d65a7 44482ec 20d65a7 44482ec 3f6000f 44482ec 20d65a7 44482ec 20d65a7 44482ec 3f6000f 44482ec b5160ae 01b516b b5160ae 44482ec e306d60 44482ec b4019bc 44482ec b4019bc 44482ec 12e9746 44482ec b4019bc 44482ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
---
license: apache-2.0
pipeline_tag: text-classification
tags:
- transformers
- sentence-transformers
- text-embeddings-inference
language:
- multilingual
---
# Reranker
**More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/tree/master).**
- [Model List](#model-list)
- [Usage](#usage)
- [Fine-tuning](#fine-tune)
- [Evaluation](#evaluation)
- [Citation](#citation)
Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
You can get a relevance score by inputting query and passage to the reranker.
And the score can be mapped to a float value in [0,1] by sigmoid function.
## Model List
| Model | Base model | Language | layerwise | feature |
|:--------------------------------------------------------------------------|:--------:|:-----------------------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | [xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
| [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) | [bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | - | Lightweight reranker model, possesses strong multilingual capabilities, easy to deploy, with fast inference. |
| [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) | [gemma-2b](https://huggingface.co/google/gemma-2b) | Multilingual | - | Suitable for multilingual contexts, performs well in both English proficiency and multilingual capabilities. |
| [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) | [MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) | Multilingual | 8-40 | Suitable for multilingual contexts, performs well in both English and Chinese proficiency, allows freedom to select layers for output, facilitating accelerated inference. |
You can select the model according your senario and resource.
- For **multilingual**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma)
- For **Chinese or English**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise).
- For **efficiency**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and the low layer of [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise).
- For better performance, recommand [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) and [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma)
## Usage
### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
#### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 )
Get relevance scores (higher scores indicate more relevance):
```python
from FlagEmbedding import FlagReranker
reranker = FlagReranker('BAAI/bge-reranker-v2-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'])
print(score) # -5.65234375
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
score = reranker.compute_score(['query', 'passage'], normalize=True)
print(score) # 0.003497010252573502
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores) # [-8.1875, 5.26171875]
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], normalize=True)
print(scores) # [0.00027803096387751553, 0.9948403768236574]
```
#### For LLM-based reranker
```python
from FlagEmbedding import FlagLLMReranker
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
# reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'])
print(score)
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores)
```
#### For LLM-based layerwise reranker
```python
from FlagEmbedding import LayerWiseFlagLLMReranker
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
# reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
print(score)
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], cutoff_layers=[28])
print(scores)
```
### Using Huggingface transformers
#### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 )
Get relevance scores (higher scores indicate more relevance):
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-m3')
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-v2-m3')
model.eval()
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
print(scores)
```
#### For LLM-based reranker
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
if prompt is None:
prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
sep = "\n"
prompt_inputs = tokenizer(prompt,
return_tensors=None,
add_special_tokens=False)['input_ids']
sep_inputs = tokenizer(sep,
return_tensors=None,
add_special_tokens=False)['input_ids']
inputs = []
for query, passage in pairs:
query_inputs = tokenizer(f'A: {query}',
return_tensors=None,
add_special_tokens=False,
max_length=max_length * 3 // 4,
truncation=True)
passage_inputs = tokenizer(f'B: {passage}',
return_tensors=None,
add_special_tokens=False,
max_length=max_length,
truncation=True)
item = tokenizer.prepare_for_model(
[tokenizer.bos_token_id] + query_inputs['input_ids'],
sep_inputs + passage_inputs['input_ids'],
truncation='only_second',
max_length=max_length,
padding=False,
return_attention_mask=False,
return_token_type_ids=False,
add_special_tokens=False
)
item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
item['attention_mask'] = [1] * len(item['input_ids'])
inputs.append(item)
return tokenizer.pad(
inputs,
padding=True,
max_length=max_length + len(sep_inputs) + len(prompt_inputs),
pad_to_multiple_of=8,
return_tensors='pt',
)
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-gemma')
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-gemma')
yes_loc = tokenizer('Yes', add_special_tokens=False)['input_ids'][0]
model.eval()
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
inputs = get_inputs(pairs, tokenizer)
scores = model(**inputs, return_dict=True).logits[:, -1, yes_loc].view(-1, ).float()
print(scores)
```
#### For LLM-based layerwise reranker
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
if prompt is None:
prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
sep = "\n"
prompt_inputs = tokenizer(prompt,
return_tensors=None,
add_special_tokens=False)['input_ids']
sep_inputs = tokenizer(sep,
return_tensors=None,
add_special_tokens=False)['input_ids']
inputs = []
for query, passage in pairs:
query_inputs = tokenizer(f'A: {query}',
return_tensors=None,
add_special_tokens=False,
max_length=max_length * 3 // 4,
truncation=True)
passage_inputs = tokenizer(f'B: {passage}',
return_tensors=None,
add_special_tokens=False,
max_length=max_length,
truncation=True)
item = tokenizer.prepare_for_model(
[tokenizer.bos_token_id] + query_inputs['input_ids'],
sep_inputs + passage_inputs['input_ids'],
truncation='only_second',
max_length=max_length,
padding=False,
return_attention_mask=False,
return_token_type_ids=False,
add_special_tokens=False
)
item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
item['attention_mask'] = [1] * len(item['input_ids'])
inputs.append(item)
return tokenizer.pad(
inputs,
padding=True,
max_length=max_length + len(sep_inputs) + len(prompt_inputs),
pad_to_multiple_of=8,
return_tensors='pt',
)
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
model = model.to('cuda')
model.eval()
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
inputs = get_inputs(pairs, tokenizer).to(model.device)
all_scores = model(**inputs, return_dict=True, cutoff_layers=[28])
all_scores = [scores[:, -1].view(-1, ).float() for scores in all_scores[0]]
print(all_scores)
```
### Using Infinity (normal reranker only (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 )
For a self-hosted deployment with [Infinity](https://github.com/michaelfeil/infinity):
```bash
docker run --gpus all -v $PWD/data:/app/.cache -e HF_TOKEN=$HF_TOKEN -p "7997":"7997" \
michaelf34/infinity:0.0.68 \
v2 --model-id BAAI/bge-reranker-v2-m3 --revision "main" --dtype float16 --batch-size 32 --engine torch --port 7997
```
## Fine-tune
### Data Format
Train data should be a json file, where each line is a dict like this:
```
{"query": str, "pos": List[str], "neg":List[str], "prompt": str}
```
`query` is the query, and `pos` is a list of positive texts, `neg` is a list of negative texts, `prompt` indicates the relationship between query and texts. If you have no negative texts for a query, you can random sample some from the entire corpus as the negatives.
See [toy_finetune_data.jsonl](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker/toy_finetune_data.jsonl) for a toy data file.
### Train
You can fine-tune the reranker with the following code:
**For llm-based reranker**
```shell
torchrun --nproc_per_node {number of gpus} \
-m FlagEmbedding.llm_reranker.finetune_for_instruction.run \
--output_dir {path to save model} \
--model_name_or_path google/gemma-2b \
--train_data ./toy_finetune_data.jsonl \
--learning_rate 2e-4 \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 16 \
--dataloader_drop_last True \
--query_max_len 512 \
--passage_max_len 512 \
--train_group_size 16 \
--logging_steps 1 \
--save_steps 2000 \
--save_total_limit 50 \
--ddp_find_unused_parameters False \
--gradient_checkpointing \
--deepspeed stage1.json \
--warmup_ratio 0.1 \
--bf16 \
--use_lora True \
--lora_rank 32 \
--lora_alpha 64 \
--use_flash_attn True \
--target_modules q_proj k_proj v_proj o_proj
```
**For llm-based layerwise reranker**
```shell
torchrun --nproc_per_node {number of gpus} \
-m FlagEmbedding.llm_reranker.finetune_for_layerwise.run \
--output_dir {path to save model} \
--model_name_or_path openbmb/MiniCPM-2B-dpo-bf16 \
--train_data ./toy_finetune_data.jsonl \
--learning_rate 2e-4 \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 16 \
--dataloader_drop_last True \
--query_max_len 512 \
--passage_max_len 512 \
--train_group_size 16 \
--logging_steps 1 \
--save_steps 2000 \
--save_total_limit 50 \
--ddp_find_unused_parameters False \
--gradient_checkpointing \
--deepspeed stage1.json \
--warmup_ratio 0.1 \
--bf16 \
--use_lora True \
--lora_rank 32 \
--lora_alpha 64 \
--use_flash_attn True \
--target_modules q_proj k_proj v_proj o_proj \
--start_layer 8 \
--head_multi True \
--head_type simple \
--lora_extra_parameters linear_head
```
Our rerankers are initialized from [google/gemma-2b](https://huggingface.co/google/gemma-2b) (for llm-based reranker) and [openbmb/MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) (for llm-based layerwise reranker), and we train it on a mixture of multilingual datasets:
- [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data)
- [quora train data](https://huggingface.co/datasets/quora)
- [fever train data](https://fever.ai/dataset/fever.html)
## Evaluation
- llama-index.
![image-20240317193909373](./assets/llama-index.png)
- BEIR.
rereank the top 100 results from bge-en-v1.5 large.
![image-20240317174633333](./assets/BEIR-bge-en-v1.5.png)
rereank the top 100 results from e5 mistral 7b instruct.
![image-20240317172949713](./assets/BEIR-e5-mistral.png)
- CMTEB-retrieval.
It rereank the top 100 results from bge-zh-v1.5 large.
![image-20240317173026235](./assets/CMTEB-retrieval-bge-zh-v1.5.png)
- miracl (multi-language).
It rereank the top 100 results from bge-m3.
![image-20240317173117639](./assets/miracl-bge-m3.png)
## Citation
If you find this repository useful, please consider giving a star and citation
```bibtex
@misc{li2023making,
title={Making Large Language Models A Better Foundation For Dense Retrieval},
author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao},
year={2023},
eprint={2312.15503},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{chen2024bge,
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
year={2024},
eprint={2402.03216},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |