File size: 2,223 Bytes
f1e1bd2 3dc010b f1e1bd2 3dc010b f1e1bd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: NLP_90_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# NLP_90_1
This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3325
- Accuracy: 0.9174
- Precision: 0.9126
- Recall: 0.9140
- F1: 0.9128
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.3664 | 1.0 | 48 | 0.3609 | 0.8991 | 0.8935 | 0.8988 | 0.8938 |
| 0.2282 | 2.0 | 96 | 0.3376 | 0.8991 | 0.8920 | 0.8978 | 0.8927 |
| 0.1638 | 3.0 | 144 | 0.3184 | 0.9128 | 0.9070 | 0.9079 | 0.9070 |
| 0.1595 | 4.0 | 192 | 0.3291 | 0.9174 | 0.9147 | 0.9131 | 0.9135 |
| 0.1388 | 5.0 | 240 | 0.3495 | 0.8945 | 0.8844 | 0.8918 | 0.8865 |
| 0.1075 | 6.0 | 288 | 0.3357 | 0.9174 | 0.9151 | 0.9141 | 0.9139 |
| 0.1073 | 7.0 | 336 | 0.3311 | 0.9174 | 0.9126 | 0.9140 | 0.9128 |
| 0.1507 | 8.0 | 384 | 0.3325 | 0.9174 | 0.9126 | 0.9140 | 0.9128 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|