--- license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: NLP_whole_dataseet_2nd results: [] --- # NLP_whole_dataseet_2nd This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0646 - Accuracy: 0.9771 - Precision: 0.9747 - Recall: 0.9741 - F1: 0.9738 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2952 | 1.0 | 55 | 0.1311 | 0.9725 | 0.9693 | 0.9690 | 0.9691 | | 0.1988 | 2.0 | 110 | 0.0827 | 0.9679 | 0.9663 | 0.9632 | 0.9638 | | 0.1823 | 3.0 | 165 | 0.0595 | 0.9771 | 0.9746 | 0.9712 | 0.9724 | | 0.1237 | 4.0 | 220 | 0.0646 | 0.9771 | 0.9747 | 0.9741 | 0.9738 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1