File size: 2,231 Bytes
c839dc0 989118c c839dc0 d8f88f7 c839dc0 989118c c839dc0 989118c c839dc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: result-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# result-colab
This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4210
- Accuracy: 0.9083
- Precision: 0.9076
- Recall: 0.9099
- F1: 0.9085
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.11 | 1.0 | 24 | 0.4032 | 0.8991 | 0.9040 | 0.8991 | 0.8980 |
| 0.0824 | 2.0 | 48 | 0.4500 | 0.8853 | 0.8806 | 0.8874 | 0.8810 |
| 0.0901 | 3.0 | 72 | 0.4908 | 0.8716 | 0.8809 | 0.8576 | 0.8653 |
| 0.0554 | 4.0 | 96 | 0.4473 | 0.8991 | 0.9059 | 0.8943 | 0.8984 |
| 0.0612 | 5.0 | 120 | 0.4675 | 0.8807 | 0.8867 | 0.8723 | 0.8766 |
| 0.0508 | 6.0 | 144 | 0.4011 | 0.9220 | 0.9228 | 0.9191 | 0.9203 |
| 0.0513 | 7.0 | 168 | 0.4161 | 0.9083 | 0.9049 | 0.9098 | 0.9070 |
| 0.049 | 8.0 | 192 | 0.4210 | 0.9083 | 0.9076 | 0.9099 | 0.9085 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|