--- license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: result-colab results: [] --- # result-colab This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3660 - Accuracy: 0.8991 - Precision: 0.8990 - Recall: 0.8942 - F1: 0.8959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3839 | 1.0 | 24 | 0.4077 | 0.8716 | 0.8635 | 0.8717 | 0.8639 | | 0.3268 | 2.0 | 48 | 0.4052 | 0.8578 | 0.8510 | 0.8489 | 0.8467 | | 0.2524 | 3.0 | 72 | 0.4014 | 0.8899 | 0.8938 | 0.8795 | 0.8843 | | 0.2171 | 4.0 | 96 | 0.3582 | 0.8899 | 0.8860 | 0.8849 | 0.8846 | | 0.1712 | 5.0 | 120 | 0.3983 | 0.8899 | 0.8885 | 0.8804 | 0.8826 | | 0.1627 | 6.0 | 144 | 0.3789 | 0.8991 | 0.8984 | 0.8998 | 0.8983 | | 0.1462 | 7.0 | 168 | 0.3884 | 0.8991 | 0.9004 | 0.8922 | 0.8955 | | 0.1499 | 8.0 | 192 | 0.3727 | 0.9083 | 0.9069 | 0.9080 | 0.9070 | | 0.1557 | 9.0 | 216 | 0.3669 | 0.8991 | 0.8990 | 0.8942 | 0.8959 | | 0.1462 | 10.0 | 240 | 0.3660 | 0.8991 | 0.8990 | 0.8942 | 0.8959 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1