--- library_name: transformers license: apache-2.0 datasets: - pints-ai/Expository-Prose-V1 language: - en inference: false --- # wordpiece-tokenizer-32k-en_code-msp A 'modern' uncased wordpiece tokenizer for MLM, analogous to `bert-base-uncased`'s tokenizer. - 32k vocab size, uncased. Trained with max alphabet of 1000 and min_freq of 5 - Unique WordPiece tokenizer that preserves whitespace information. - Done through ~~witchcraft~~ a combination of `Metaspace()` and custom grouping/filtering logic - trained on english/code via `pints-ai/Expository-Prose-V1` to leverage ^ ## Usage ```py from transformers import AutoTokenizer repo_id = "BEE-spoke-data/wordpiece-tokenizer-32k-en_code-msp" tokenizer = AutoTokenizer.from_pretrained(repo_id) # same usage as any other tokenizer for encoder models ``` ## Comparison vs bert-base-uncased ### vocab
Click to see comparison code Code to run the below comparison: ```py import random from transformers import AutoTokenizer tk_base = AutoTokenizer.from_pretrained("bert-base-uncased") tk_retrained = AutoTokenizer.from_pretrained("BEE-spoke-data/wordpiece-tokenizer-32k-en_code-msp") # Get vocabularies as sets vocab_base = set(tk_base.get_vocab().keys()) vocab_retrained = set(tk_retrained.get_vocab().keys()) # Compare vocabularies common_tokens = vocab_base.intersection(vocab_retrained) unique_to_base = vocab_base.difference(vocab_retrained) unique_to_retrained = vocab_retrained.difference(vocab_base) # Print results print(f"Total tokens in base tokenizer: {len(vocab_base)}") print(f"Total tokens in retrained tokenizer: {len(vocab_retrained)}") print(f"Number of common tokens: {len(common_tokens)}") print(f"Tokens unique to base tokenizer: {len(unique_to_base)}") print(f"Tokens unique to retrained tokenizer: {len(unique_to_retrained)}") # Optionally print a few examples print("\nExamples of common tokens:", random.sample(list(common_tokens), k=10)) print("\nExamples of tokens unique to base:", random.sample(list(unique_to_base), k=20)) print( "\nExamples of tokens unique to retrained:", random.sample(list(unique_to_retrained), k=20) ) ```
``` Total tokens in base tokenizer: 30522 Total tokens in retrained tokenizer: 31999 Number of common tokens: 19481 Tokens unique to base tokenizer: 11041 Tokens unique to retrained tokenizer: 12518 Examples of common tokens: ['mayo', 'halo', 'tad', 'isles', '##hy', 'molecular', '##43', '##へ', 'mike', 'reaction'] Examples of tokens unique to base: ['##ingdon', 'vikram', '##worm', '##mobile', 'saxophonist', 'azerbaijani', 'flared', 'picasso', 'modernized', 'brothel', '##cytes', '[unused933]', 'humming', 'pontiac', '##ła', 'wembley', '14th', '##runa', '##eum', '劉'] Examples of tokens unique to retrained: ['discrimin', '##emporal', 'tabern', 'mund', '##jud', 'schrodinger', '##oscope', 'resp', '##imento', '▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁', 'caterpillar', '##374', '##endentry', 'undoubted', 'subpro', 'indispensable', '##ushed', '##sein', 'utterance', 'disambigu'] ``` ### whitespace encoding Let's say we want to tokenize the below class: ```py class DyT(nn.Module): def __init__(self, num_features, alpha_init_value=0.5): super().__init__() self.alpha = nn.Parameter(torch.ones(1) * alpha_init_value) self.weight = nn.Parameter(torch.ones(num_features)) self.bias = nn.Parameter(torch.zeros(num_features)) def forward(self, x): x = torch.tanh(self.alpha * x) return x * self.weight + self.bias ``` `bert-base-uncased` ignores the indentations for python, while our tokenizer does not: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/VM7zbZnO5w_Sa6XjB0Wp0.png) this tokenizer: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/LBf2PdKVwv3emSOSL2Z2b.png)