BachNgoH commited on
Commit
eb4c35c
·
1 Parent(s): 2de1460

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1530.78 +/- 40.48
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4ff3c09d27919d30e1b70fb8b014e8e76fea48a0aa17c4397aae2cbd73ef495
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f354e5d4c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f354e5d4ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f354e5d4d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f354e5d4dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f354e5d4e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f354e5d4ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f354e5d4f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f354e5d9040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f354e5d90d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f354e5d9160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f354e5d91f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f354e5d9280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f354e5d2390>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675768989840263258,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJBv8b+UqTg/c5TtvXxDRb/PZj6/KbOWPJbBtL3QNyc/yf8GvUa/sr7NNT2/l0zdPi4757/4liDAJpECP+z21b9UpAO/gPzKvdCpAz/X8yc/XGbAP1TFNryBzoy/300gP4uPjj+aTRw/9zybPnRax7/19qa8oU30vRAgCj/NH7K+ye+Lvbk7HD+CvCE/0esLPcPBOzsDX6q/dBbEP0ZhFD+AYRa/mrDZPqsYf7+HSYk8UBpNP2bvs74O+BM/hdvvPGDziD8pG8W+iERUPs/YZz6Lj44/mk0cP/c8mz4YXyQ/qP4kv804pz4Ux4U+iuGMv3mgNb/2S5A+gdhXPrQnl71PTTg+Z4PIPmXJ9D7H9/Y9/2enu5cG/T6t94c+g8Iovk6GVL4wUjQ/GUYUPx8gvbtfDTU/HwRYPpJE7b2nHby9i4+OP5pNHD/3PJs+GF8kPzgbi761yjM/cHzAvRA/qb5M+DS+tnIZP9W1Jz9qaY2+qtyvvnSzHr8cdJM/DVR0P+Taf77SWP0+wgusviOTzbwEEj+/3dedPs7vEz+FqGE8uVLNP4IOEb6zFBc/BOOAPlraZb+aTRw/9zybPhhfJD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABLpRq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/5w2PQAAAAB6pve/AAAAACRG+7wAAAAA78fZPwAAAABf0YS8AAAAAKzT2T8AAAAA5vAPPAAAAABfvOa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPG3tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKpYdL0AAAAAPNL9vwAAAAAIhvK9AAAAANZ32z8AAAAA99aUvQAAAACzG/Q/AAAAAObrib0AAAAAEEP1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIdCo7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBew6+8AAAAAAIL6r8AAAAA2dGHvAAAAADiDfs/AAAAAKDPQr0AAAAA1GPkPwAAAABkoAA8AAAAAMWS2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMiLE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjym4vQAAAACVpeC/AAAAAGSU7ToAAAAA0pLZPwAAAADMAK09AAAAAAu37D8AAAAA/1ZJvQAAAAD75ey/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8Ar5CWu5mMAWyUTegDjAF0lEdAq6gwmsvIwXV9lChoBkdAmTsxybQTmGgHTegDaAhHQKuvwfh/Aj91fZQoaAZHQJ0SuZjQRf5oB03oA2gIR0CrsF8ophF3dX2UKGgGR0Ce0snTAnD0aAdN6ANoCEdAq7L4B7u2JHV9lChoBkdAnxQHhS9/SmgHTegDaAhHQKu4niDM/yJ1fZQoaAZHQJ1HlhgE2YRoB03oA2gIR0CrvVhGpda/dX2UKGgGR0CeQ04b0e2eaAdN6ANoCEdAq72z+aScLHV9lChoBkdAoCS6uQp4KWgHTegDaAhHQKvAOYXwb2l1fZQoaAZHQJrwHNVzZHxoB03oA2gIR0CrxjMEA5q/dX2UKGgGR0CbyMA08/2TaAdN6ANoCEdAq82eQ0XP7nV9lChoBkdAnNVwOe8PF2gHTegDaAhHQKvOOc6Nly11fZQoaAZHQJz/aX6ZYxNoB03oA2gIR0Cr0YkCFK02dX2UKGgGR0CcB2E6kqMFaAdN6ANoCEdAq9b3bGm1pnV9lChoBkdAm5CX8baRIWgHTegDaAhHQKvbm5rgwXZ1fZQoaAZHQJxvwv7FbV1oB03oA2gIR0Cr2/+gDifhdX2UKGgGR0CdAivOyE+QaAdN6ANoCEdAq95jmKZUk3V9lChoBkdAkC+xKpT/AGgHTegDaAhHQKvkA7OE/Sp1fZQoaAZHQJcWAPd2xIJoB03oA2gIR0Cr6xcEV32VdX2UKGgGR0Cadqg3cYZVaAdN6ANoCEdAq+uygRK6F3V9lChoBkdAmWiK/20zCWgHTegDaAhHQKvvveTmnwZ1fZQoaAZHQJhPqOWBz3hoB03oA2gIR0Cr9YqlYU35dX2UKGgGR0CYd3Fg2IfsaAdN6ANoCEdAq/oXgrH2iHV9lChoBkdAl0yAPuogm2gHTegDaAhHQKv6fihFmWd1fZQoaAZHQJdJ+sgdOqNoB03oA2gIR0Cr/QZnL7oCdX2UKGgGR0CYX5J7LMcIaAdN6ANoCEdArAKloQFs6HV9lChoBkdAlT33+qBEr2gHTegDaAhHQKwI2LQ5WBB1fZQoaAZHQJjUUbm2b5NoB03oA2gIR0CsCWVeruIAdX2UKGgGR0CXzt7Uoa1kaAdN6ANoCEdArA1d+y7f53V9lChoBkdAlzO9cjZ+QWgHTegDaAhHQKwUFo9LYf51fZQoaAZHQJp0Pnjhky1oB03oA2gIR0CsGNIsAeaKdX2UKGgGR0CbmnJUo8ZDaAdN6ANoCEdArBkyk690zXV9lChoBkdAm1kMgIQe3mgHTegDaAhHQKwbofZElVt1fZQoaAZHQJ3F4vxpcopoB03oA2gIR0CsITLLhaTwdX2UKGgGR0CeAfuB+WnkaAdN6ANoCEdArCb1XzUZvXV9lChoBkdAm/OcSwnpjmgHTegDaAhHQKwngo4MnZ11fZQoaAZHQJ53sRkEs8RoB03oA2gIR0CsK4W4/eLvdX2UKGgGR0CcWP1QZXMhaAdN6ANoCEdArDL95IH1OHV9lChoBkdAmOlJljEvTWgHTegDaAhHQKw3yDujRD11fZQoaAZHQJwGyfHxSYRoB03oA2gIR0CsODJfpljFdX2UKGgGR0CdAV3wTdtVaAdN6ANoCEdArDrMK5TZQHV9lChoBkdAmmPSgK4QSWgHTegDaAhHQKxAVdWyTpx1fZQoaAZHQJqXlY9xIatoB03oA2gIR0CsRallsguAdX2UKGgGR0CaAybsF+uvaAdN6ANoCEdArEY+kSElFHV9lChoBkdAmsOfjbSJCWgHTegDaAhHQKxKE15Sm651fZQoaAZHQJxsfRmbsnloB03oA2gIR0CsUfJ9AooedX2UKGgGR0CbEgi9qUNbaAdN6ANoCEdArFa0KJEYwnV9lChoBkdAnI8Aswtap2gHTegDaAhHQKxXEaJAMUh1fZQoaAZHQJoGTFqBVdZoB03oA2gIR0CsWYBU70WedX2UKGgGR0CX7ZinpB5YaAdN6ANoCEdArF70ejmCAnV9lChoBkdAnSqFtoBaLWgHTegDaAhHQKxjvGEwnIB1fZQoaAZHQJxMIWykbgloB03oA2gIR0CsZBq+8Gs4dX2UKGgGR0CWjXYTCcgAaAdN6ANoCEdArGfpkbxVhnV9lChoBkdAmVDNlNDc/WgHTegDaAhHQKxwqiUPhAJ1fZQoaAZHQJsmFJOFg2JoB03oA2gIR0CsdUYo7V8UdX2UKGgGR0CbP1T6i0v5aAdN6ANoCEdArHWqFPBSDXV9lChoBkdAm9axFVktmWgHTegDaAhHQKx4H1zySV51fZQoaAZHQJ6riEIw/PhoB03oA2gIR0Csfa26K+BZdX2UKGgGR0CcbIMdtEXtaAdN6ANoCEdArIJUenyd4HV9lChoBkdAm6fmcSXdCWgHTegDaAhHQKyCtyXlbNd1fZQoaAZHQJvnZeeFtbdoB03oA2gIR0CshbkRaouPdX2UKGgGR0Cbv+ZZ0SyuaAdN6ANoCEdArI6VnoPkJnV9lChoBkdAl17ENe+mFmgHTegDaAhHQKyT2IRh+fB1fZQoaAZHQJm2pEYwZfloB03oA2gIR0CslDv4EfT1dX2UKGgGR0CdCuxxkupTaAdN6ANoCEdArJawwEhaDHV9lChoBkdAnFQdg8bJfmgHTegDaAhHQKycQZn+Q2d1fZQoaAZHQJtRyyQgcLloB03oA2gIR0CsoRAXuVopdX2UKGgGR0CaPomvnr6daAdN6ANoCEdArKFu1ndwenV9lChoBkdAmLNP5pJwsGgHTegDaAhHQKyj/uuzQeF1fZQoaAZHQJj5s44p+c9oB03oA2gIR0CsrOFTefqYdX2UKGgGR0CYKEBIFvAHaAdN6ANoCEdArLK+a2F36nV9lChoBkdAmNBLzCk43mgHTegDaAhHQKyzI/keZG91fZQoaAZHQJsiAZn+Q2doB03oA2gIR0Cstaouf29MdX2UKGgGR0CatD8Rcu8LaAdN6ANoCEdArLs4VVPva3V9lChoBkdAmy55wbVBlmgHTegDaAhHQKy/8oQ4CIV1fZQoaAZHQJgxSyu6mO5oB03oA2gIR0CswFHHmzSkdX2UKGgGR0CbvuA/9pAVaAdN6ANoCEdArMLYxDb8FnV9lChoBkdAmaGXtBv732gHTegDaAhHQKzK5K3/gix1fZQoaAZHQJxe/G0eEIxoB03oA2gIR0Cs0WcqvvBrdX2UKGgGR0CZmaDD0lJIaAdN6ANoCEdArNHKjvd/KHV9lChoBkdAmq5CyMUAUGgHTegDaAhHQKzUPO/tY0V1fZQoaAZHQJ111Huqm0poB03oA2gIR0Cs2bPKuB+XdX2UKGgGR0CeZDgc94eLaAdN6ANoCEdArN5rYoRZlnV9lChoBkdAmr9ok/r0KGgHTegDaAhHQKzeyFpwjt51fZQoaAZHQJySRbVz6rNoB03oA2gIR0Cs4S3tjTa1dX2UKGgGR0CaOkGPxQSBaAdN6ANoCEdArOgeLehwl3V9lChoBkdAnqNqWX1J2GgHTegDaAhHQKzvhSUkfLd1fZQoaAZHQJ29uYLLIPtoB03oA2gIR0Cs796MaS9vdX2UKGgGR0Cb3T04iosJaAdN6ANoCEdArPI5DgIhQnV9lChoBkdAmk6do371qWgHTegDaAhHQKz3rkz41xd1fZQoaAZHQJtTkngHeJpoB03oA2gIR0Cs/HBfjS5RdX2UKGgGR0Cc2YS5AhStaAdN6ANoCEdArPzaNn5BTnV9lChoBkdAmjePU4JeFGgHTegDaAhHQKz/Qu+yquN1fZQoaAZHQJpyU8YAKfFoB03oA2gIR0CtBVvd2xIKdX2UKGgGR0CboPl8w5/9aAdN6ANoCEdArQyrjJdSl3V9lChoBkdAm6W7GNrCWWgHTegDaAhHQK0NSmelKsd1fZQoaAZHQJoADDKoybhoB03oA2gIR0CtEFUDuBtldX2UKGgGR0CZreh3JPqLaAdN6ANoCEdArRXu3DvVmXV9lChoBkdAmdY/huO0cGgHTegDaAhHQK0amDifg751fZQoaAZHQJkb8lZ5iVloB03oA2gIR0CtGve5OJtSdX2UKGgGR0CZHszySV4YaAdN6ANoCEdArR1XluFYdXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:837acfcad106d3e9cc1d2aa54462dfa39d6ae92f9c1e3db09ec12768da170851
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b583bfbaee1bdd8b7564bdff5f47fc73e2b598529c0e41d67192b01a91d7fb8d
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f354e5d4c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f354e5d4ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f354e5d4d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f354e5d4dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f354e5d4e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f354e5d4ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f354e5d4f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f354e5d9040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f354e5d90d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f354e5d9160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f354e5d91f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f354e5d9280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f354e5d2390>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675768989840263258, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJBv8b+UqTg/c5TtvXxDRb/PZj6/KbOWPJbBtL3QNyc/yf8GvUa/sr7NNT2/l0zdPi4757/4liDAJpECP+z21b9UpAO/gPzKvdCpAz/X8yc/XGbAP1TFNryBzoy/300gP4uPjj+aTRw/9zybPnRax7/19qa8oU30vRAgCj/NH7K+ye+Lvbk7HD+CvCE/0esLPcPBOzsDX6q/dBbEP0ZhFD+AYRa/mrDZPqsYf7+HSYk8UBpNP2bvs74O+BM/hdvvPGDziD8pG8W+iERUPs/YZz6Lj44/mk0cP/c8mz4YXyQ/qP4kv804pz4Ux4U+iuGMv3mgNb/2S5A+gdhXPrQnl71PTTg+Z4PIPmXJ9D7H9/Y9/2enu5cG/T6t94c+g8Iovk6GVL4wUjQ/GUYUPx8gvbtfDTU/HwRYPpJE7b2nHby9i4+OP5pNHD/3PJs+GF8kPzgbi761yjM/cHzAvRA/qb5M+DS+tnIZP9W1Jz9qaY2+qtyvvnSzHr8cdJM/DVR0P+Taf77SWP0+wgusviOTzbwEEj+/3dedPs7vEz+FqGE8uVLNP4IOEb6zFBc/BOOAPlraZb+aTRw/9zybPhhfJD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABLpRq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/5w2PQAAAAB6pve/AAAAACRG+7wAAAAA78fZPwAAAABf0YS8AAAAAKzT2T8AAAAA5vAPPAAAAABfvOa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPG3tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKpYdL0AAAAAPNL9vwAAAAAIhvK9AAAAANZ32z8AAAAA99aUvQAAAACzG/Q/AAAAAObrib0AAAAAEEP1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIdCo7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBew6+8AAAAAAIL6r8AAAAA2dGHvAAAAADiDfs/AAAAAKDPQr0AAAAA1GPkPwAAAABkoAA8AAAAAMWS2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMiLE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjym4vQAAAACVpeC/AAAAAGSU7ToAAAAA0pLZPwAAAADMAK09AAAAAAu37D8AAAAA/1ZJvQAAAAD75ey/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8Ar5CWu5mMAWyUTegDjAF0lEdAq6gwmsvIwXV9lChoBkdAmTsxybQTmGgHTegDaAhHQKuvwfh/Aj91fZQoaAZHQJ0SuZjQRf5oB03oA2gIR0CrsF8ophF3dX2UKGgGR0Ce0snTAnD0aAdN6ANoCEdAq7L4B7u2JHV9lChoBkdAnxQHhS9/SmgHTegDaAhHQKu4niDM/yJ1fZQoaAZHQJ1HlhgE2YRoB03oA2gIR0CrvVhGpda/dX2UKGgGR0CeQ04b0e2eaAdN6ANoCEdAq72z+aScLHV9lChoBkdAoCS6uQp4KWgHTegDaAhHQKvAOYXwb2l1fZQoaAZHQJrwHNVzZHxoB03oA2gIR0CrxjMEA5q/dX2UKGgGR0CbyMA08/2TaAdN6ANoCEdAq82eQ0XP7nV9lChoBkdAnNVwOe8PF2gHTegDaAhHQKvOOc6Nly11fZQoaAZHQJz/aX6ZYxNoB03oA2gIR0Cr0YkCFK02dX2UKGgGR0CcB2E6kqMFaAdN6ANoCEdAq9b3bGm1pnV9lChoBkdAm5CX8baRIWgHTegDaAhHQKvbm5rgwXZ1fZQoaAZHQJxvwv7FbV1oB03oA2gIR0Cr2/+gDifhdX2UKGgGR0CdAivOyE+QaAdN6ANoCEdAq95jmKZUk3V9lChoBkdAkC+xKpT/AGgHTegDaAhHQKvkA7OE/Sp1fZQoaAZHQJcWAPd2xIJoB03oA2gIR0Cr6xcEV32VdX2UKGgGR0Cadqg3cYZVaAdN6ANoCEdAq+uygRK6F3V9lChoBkdAmWiK/20zCWgHTegDaAhHQKvvveTmnwZ1fZQoaAZHQJhPqOWBz3hoB03oA2gIR0Cr9YqlYU35dX2UKGgGR0CYd3Fg2IfsaAdN6ANoCEdAq/oXgrH2iHV9lChoBkdAl0yAPuogm2gHTegDaAhHQKv6fihFmWd1fZQoaAZHQJdJ+sgdOqNoB03oA2gIR0Cr/QZnL7oCdX2UKGgGR0CYX5J7LMcIaAdN6ANoCEdArAKloQFs6HV9lChoBkdAlT33+qBEr2gHTegDaAhHQKwI2LQ5WBB1fZQoaAZHQJjUUbm2b5NoB03oA2gIR0CsCWVeruIAdX2UKGgGR0CXzt7Uoa1kaAdN6ANoCEdArA1d+y7f53V9lChoBkdAlzO9cjZ+QWgHTegDaAhHQKwUFo9LYf51fZQoaAZHQJp0Pnjhky1oB03oA2gIR0CsGNIsAeaKdX2UKGgGR0CbmnJUo8ZDaAdN6ANoCEdArBkyk690zXV9lChoBkdAm1kMgIQe3mgHTegDaAhHQKwbofZElVt1fZQoaAZHQJ3F4vxpcopoB03oA2gIR0CsITLLhaTwdX2UKGgGR0CeAfuB+WnkaAdN6ANoCEdArCb1XzUZvXV9lChoBkdAm/OcSwnpjmgHTegDaAhHQKwngo4MnZ11fZQoaAZHQJ53sRkEs8RoB03oA2gIR0CsK4W4/eLvdX2UKGgGR0CcWP1QZXMhaAdN6ANoCEdArDL95IH1OHV9lChoBkdAmOlJljEvTWgHTegDaAhHQKw3yDujRD11fZQoaAZHQJwGyfHxSYRoB03oA2gIR0CsODJfpljFdX2UKGgGR0CdAV3wTdtVaAdN6ANoCEdArDrMK5TZQHV9lChoBkdAmmPSgK4QSWgHTegDaAhHQKxAVdWyTpx1fZQoaAZHQJqXlY9xIatoB03oA2gIR0CsRallsguAdX2UKGgGR0CaAybsF+uvaAdN6ANoCEdArEY+kSElFHV9lChoBkdAmsOfjbSJCWgHTegDaAhHQKxKE15Sm651fZQoaAZHQJxsfRmbsnloB03oA2gIR0CsUfJ9AooedX2UKGgGR0CbEgi9qUNbaAdN6ANoCEdArFa0KJEYwnV9lChoBkdAnI8Aswtap2gHTegDaAhHQKxXEaJAMUh1fZQoaAZHQJoGTFqBVdZoB03oA2gIR0CsWYBU70WedX2UKGgGR0CX7ZinpB5YaAdN6ANoCEdArF70ejmCAnV9lChoBkdAnSqFtoBaLWgHTegDaAhHQKxjvGEwnIB1fZQoaAZHQJxMIWykbgloB03oA2gIR0CsZBq+8Gs4dX2UKGgGR0CWjXYTCcgAaAdN6ANoCEdArGfpkbxVhnV9lChoBkdAmVDNlNDc/WgHTegDaAhHQKxwqiUPhAJ1fZQoaAZHQJsmFJOFg2JoB03oA2gIR0CsdUYo7V8UdX2UKGgGR0CbP1T6i0v5aAdN6ANoCEdArHWqFPBSDXV9lChoBkdAm9axFVktmWgHTegDaAhHQKx4H1zySV51fZQoaAZHQJ6riEIw/PhoB03oA2gIR0Csfa26K+BZdX2UKGgGR0CcbIMdtEXtaAdN6ANoCEdArIJUenyd4HV9lChoBkdAm6fmcSXdCWgHTegDaAhHQKyCtyXlbNd1fZQoaAZHQJvnZeeFtbdoB03oA2gIR0CshbkRaouPdX2UKGgGR0Cbv+ZZ0SyuaAdN6ANoCEdArI6VnoPkJnV9lChoBkdAl17ENe+mFmgHTegDaAhHQKyT2IRh+fB1fZQoaAZHQJm2pEYwZfloB03oA2gIR0CslDv4EfT1dX2UKGgGR0CdCuxxkupTaAdN6ANoCEdArJawwEhaDHV9lChoBkdAnFQdg8bJfmgHTegDaAhHQKycQZn+Q2d1fZQoaAZHQJtRyyQgcLloB03oA2gIR0CsoRAXuVopdX2UKGgGR0CaPomvnr6daAdN6ANoCEdArKFu1ndwenV9lChoBkdAmLNP5pJwsGgHTegDaAhHQKyj/uuzQeF1fZQoaAZHQJj5s44p+c9oB03oA2gIR0CsrOFTefqYdX2UKGgGR0CYKEBIFvAHaAdN6ANoCEdArLK+a2F36nV9lChoBkdAmNBLzCk43mgHTegDaAhHQKyzI/keZG91fZQoaAZHQJsiAZn+Q2doB03oA2gIR0Cstaouf29MdX2UKGgGR0CatD8Rcu8LaAdN6ANoCEdArLs4VVPva3V9lChoBkdAmy55wbVBlmgHTegDaAhHQKy/8oQ4CIV1fZQoaAZHQJgxSyu6mO5oB03oA2gIR0CswFHHmzSkdX2UKGgGR0CbvuA/9pAVaAdN6ANoCEdArMLYxDb8FnV9lChoBkdAmaGXtBv732gHTegDaAhHQKzK5K3/gix1fZQoaAZHQJxe/G0eEIxoB03oA2gIR0Cs0WcqvvBrdX2UKGgGR0CZmaDD0lJIaAdN6ANoCEdArNHKjvd/KHV9lChoBkdAmq5CyMUAUGgHTegDaAhHQKzUPO/tY0V1fZQoaAZHQJ111Huqm0poB03oA2gIR0Cs2bPKuB+XdX2UKGgGR0CeZDgc94eLaAdN6ANoCEdArN5rYoRZlnV9lChoBkdAmr9ok/r0KGgHTegDaAhHQKzeyFpwjt51fZQoaAZHQJySRbVz6rNoB03oA2gIR0Cs4S3tjTa1dX2UKGgGR0CaOkGPxQSBaAdN6ANoCEdArOgeLehwl3V9lChoBkdAnqNqWX1J2GgHTegDaAhHQKzvhSUkfLd1fZQoaAZHQJ29uYLLIPtoB03oA2gIR0Cs796MaS9vdX2UKGgGR0Cb3T04iosJaAdN6ANoCEdArPI5DgIhQnV9lChoBkdAmk6do371qWgHTegDaAhHQKz3rkz41xd1fZQoaAZHQJtTkngHeJpoB03oA2gIR0Cs/HBfjS5RdX2UKGgGR0Cc2YS5AhStaAdN6ANoCEdArPzaNn5BTnV9lChoBkdAmjePU4JeFGgHTegDaAhHQKz/Qu+yquN1fZQoaAZHQJpyU8YAKfFoB03oA2gIR0CtBVvd2xIKdX2UKGgGR0CboPl8w5/9aAdN6ANoCEdArQyrjJdSl3V9lChoBkdAm6W7GNrCWWgHTegDaAhHQK0NSmelKsd1fZQoaAZHQJoADDKoybhoB03oA2gIR0CtEFUDuBtldX2UKGgGR0CZreh3JPqLaAdN6ANoCEdArRXu3DvVmXV9lChoBkdAmdY/huO0cGgHTegDaAhHQK0amDifg751fZQoaAZHQJkb8lZ5iVloB03oA2gIR0CtGve5OJtSdX2UKGgGR0CZHszySV4YaAdN6ANoCEdArR1XluFYdXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc872c09b9fa83a9c2a6aac282025a6c63646e33d608060cd438aae9c12ec11d
3
+ size 1154437
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1530.78280248479, "std_reward": 40.47643455742591, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-07T12:40:32.724601"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9314de2d6fbbf40fb1abd66ec7bb52f164c32f9f6b2b0d7fc7fb6cf7b5a55cb9
3
+ size 2521